Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-31T18:58:04.789Z Has data issue: false hasContentIssue false

Microstructure of Nonpolar a-Plane GaN Grown on (1120) 4H-SiC Investigated by TEM.

Published online by Cambridge University Press:  01 February 2011

D. N. Zakharov
Affiliation:
Lawrence Berkeley National Laboratory, MS 62–203, Berkeley, CA 94720
Z. Liliental-Weber
Affiliation:
Lawrence Berkeley National Laboratory, MS 62–203, Berkeley, CA 94720
B. Wagner
Affiliation:
North Carolina State University, Raleigh, NC 27695
Z. J. Reitmeier
Affiliation:
North Carolina State University, Raleigh, NC 27695
E. A. Preble
Affiliation:
North Carolina State University, Raleigh, NC 27695
R. F. Davis
Affiliation:
North Carolina State University, Raleigh, NC 27695
Get access

Abstract

Plan-view and cross-section samples of (1120) (a-plane) GaN grown on 4H-SiC substrates with AlN buffer layers were studied by transmission electron microscopy. Samples reveal the presence of a high density of stacking faults formed on the basal plane of hexagonal GaN. These stacking faults, terminated in the growth plane by threading dislocations, nucleate at the AlN/4H-SiC interface and propagate to the GaN layer surface. High resolution electron microscopy shows that the majority of stacking faults are low-energy planar defects of the type I1 and I2. High energy stacking faults (E) are not observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Science 281, 965 (1998)Google Scholar
2. Nishida, T. and Kobayashi, N., Phys. Stat. Sol. A 188, 113 (2001)Google Scholar
3. Bernardini, F. and Fiorentini, V.: Phys. Rev. B 57, 9427 (1998)Google Scholar
4. Jin Seo, I., Kollmer, H., Off, J., Sohmer, A., Scholz, F., and Hangleiter, A., Phys. Rev. B 57, R9435 (1998)Google Scholar
5. Kuokstis, E., Chen, C.Q., Gaevski, M.E., Sun, W.H., Yang, J.W., Simin, G., Asif Khan, M., Maruska, H.P., Hill, D. W., Chou, M. C., Gallagher, J. J., Chai, B., Appl. Phys. Lett., 81, 4130 (2002)Google Scholar
6. Craven, M.D., Waltereit, P., Wu, F., Speck, J.S., and DenBaars, S.P., Jpn. J. Appl. Phys. Part 2 42, L235 (2003)Google Scholar
7. Haskell, B.A., Wu, F., Matsuda, S., Craven, M.D., Fini, P.T., DenBaars, S.P., Speck, J.S., and Nakamura, S., Appl. Phys. Lett. 83, 1554 (2003)Google Scholar
8. Jasinski, J., Liliental-Weber, Z., Maruska, H.P., Chai, B.H., Hill, D.W., Chou, M.M.C., Gallagher, J.J., Brown, S., Mat. Res. Soc. Symp. Proc. 764, C6.6.1 (2003)Google Scholar
9. Hull, D. and Bacon, D.J., Introduction to Dislocation, 3rd Ed., Intl. Series on Materials Science and Technology, (Oxford, New York, Beijing, Frankfurt, Sao Paulo, Sydney, Tokyo, Toronto: Pergamon Press, 1984), p. 112 Google Scholar