Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-16T17:47:28.958Z Has data issue: false hasContentIssue false

Microstructure of A12O3 Irradiated with an Applied Electric Field

Published online by Cambridge University Press:  16 February 2011

S. J. Zinkle
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6376, USA.
J.D. Hunn
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6376, USA.
R.E. Stoller
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6376, USA.
Get access

Abstract

A thin amorphous film of alumina was irradiated with 2-MeV He+ ions at ~400°C up to a damage level of about 0.01 displacements per atom (dpa). The alumina films were sufficiently thin (~1.8 μm) to allow the ion beam to be completely transmitted through the specimen. An electric field of μ280 V/;mm (dc) was applied continuously during the irradiation. Radiation induced electrical degradation (RIED), i.e. a permanent increase in the conductance of the film, was observed in specimens irradiated at temperatures near 400 to 450°C but did not occur in a specimen irradiated above 500°C. An investigation by transmission electron microscopy found no evidence for colloid formation. The observed increase in the conductance of the alumina film may be due to radiation-induced microcracking.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zinkle, S.J. and Hodgson, E.R., J. Nucl. Mater. 191–194, 5866 (1992).Google Scholar
2. Hobbs, L.W., Clinard, F.W. Jr, Ewing, R.C. and Zinkle, S.J., J. Nucl. Mater. 216, 291321 (1994).Google Scholar
3. Hodgson, E.R., Cryst. Latt. Def. Amorph. Mater. 18, 169 (1989).Google Scholar
4. Hodgson, E.R., J. Nucl. Mater. 179–181, 38 (1991).Google Scholar
5. Hodgson, E.R., Rad. Eff. Def. Solids 119–121, 827 (1991).Google Scholar
6. Pells, G.P., J. Nucl. Mater. 184, 177 (1991).Google Scholar
7. Shikama, T. et al. , J. Nucl. Mater. 191–194, 544 (1992).Google Scholar
8. Hodgson, E.R., J. Nucl. Mater. 212–215, 1123 (1994).Google Scholar
9. Zong, X-F, Shen, C-F, Liu, S., Wu, Z-C, Chen, Y., Chen, Y., Evans, B.D., Gonzalez, R. and Sellers, C.H., Phys. Rev. B 49, 1551415524 (1994).Google Scholar
10. Moslang, A., E. Daum and Lindau, R., Proc. 18th Symp. of Fusion Technology, Karlsruhe, August 22-26, 1994, in press.Google Scholar
11. Kesternich, W., Scheuermann, F. and Zinkle, S.J., J. Nucl. Mater. 206, 68 (1993).Google Scholar
12. Jung, P., Zhu, Z. and Klein, H., J. Nucl. Mater. 206, 72 (1993).Google Scholar
13. Evans, B.D., J. Nucl. Mater. 219, in press (1995).Google Scholar
14. Kesternich, W., Scheuermann, F. and Zinkle, S.J., J. Nucl. Mater. 219, in press (1995).Google Scholar
15. Hunn, J.D., Stoller, R.E. and Zinkle, S.J., J. Nucl. Mater. 219, in press (1995).Google Scholar
16. Lewis, M.B. et al. , Nucl. Instr. and Meth. B 43, 243 (1989).Google Scholar
17. Ziegler, J.F., Biersak, J.P. and Littmark, U.L., The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985). Dose rate calculations were performed using TRIM-90.Google Scholar
18. Zinkle, S.J. et al. , J. Eln. Microsc. Tech. 19, 452 (1991).Google Scholar
19. Patuwathavithane, C., Wu, W.Y. and Zee, R.H., 17th ASTM Symposium on Effects of Radiation on Materials, Sun Valley, Idaho, June 1994, submitted to J. Nucl. Mater.Google Scholar
20. McKay, K.G., Phys. Rev. 74, 1606 (1948).Google Scholar
21. Micheletti, F.B. and Kolondra, F., IEEE Trans. on Nucl. Sci., NS-18 (6), 131 (1971).Google Scholar
22. Gross, B., in Electrets, Topics in Applied Physics Vol. 33, edited by Sessler, G.M. (Springer- Verlag, New York, 1980) p. 217.Google Scholar
23. Macdonald, J.R., Franceschetti, D.R. and Lehnen, A.P., J. Chem. Phys. 73, 5272 (1980).Google Scholar
24. Gromov, V.V., Zh. Fiz. Khim. 55, 1377 (1981) [Russ. J. Phys. Chem. 55, 777 (1981)].Google Scholar
25. Rozno, A.G. and Gromov, V.V., Zh. Fiz. Khim. 55, 1597 (1981) [Russ. J. Phys. Chem. 55, 901 (1981)].Google Scholar
26. Basun, S.A., Kapianskii, A.A. and Feofilav, S.P., Zh. Eksp. Teor. Fiz 87, 2047 (1984) [Sov. Phys. JETP 60, 1182 (1984)].Google Scholar
27. Frederickson, A.R., Woolf, S. and Garth, F.C., IEEE Trans. Nucl. Sci. 40 (6) 1393 (1993).Google Scholar