Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-28T13:47:04.715Z Has data issue: false hasContentIssue false

Microstructure and Coercivity of Rapidly Quenched ND-FE-B Magnets

Published online by Cambridge University Press:  15 February 2011

Frederick E. Pinkerton*
Affiliation:
Physics Department, General Motors Research Laboratories, Warren, MI 48090-9055
Get access

Abstract

Rapidly quenched Nd2Fe14B-based permanent magnets owe their high intrinsic coercivity Hci to their unique submicron-sized grain structure. While no clear consensus has yet emerged regarding the microscopic origin of coercivity in these fascinating materials, magnetic and structural data suggest pinning of magnetic domain walls at or in an intergranular phase between Nd2Fe14B grains as the most likely mechanism. The small, randomly oriented grains in isotropic melt-spun ribbons produce a magnetic structure wherein each Nd2Fe14B grain is a single magnetic domain, with the domain walls expelled to the grain boundaries. The magnetic interaction between neighboring grains plays an important role in the magnetization reversal of individual grains, as revealed, for example, by detailed examination of the initial magnetization and demagnetization processes. The formation of large domain structures via these interactions is frustrated by the random grain orientation in ribbons, but short range magnetic correlations between grains (“interaction domains”) are observed locally.

The oriented grains in aligned die upset magnets produce a very different magnetic structure having large scale coherent domains which extend through many grains. A variety of experiments, including studies of the temperature dependence of Hci, suggest that coercivity arises from pinning of the extended domain walls at Nd2Fe14B grain edges.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Herbst, J. F., Croat, J. J., Pinkerton, F. E., and Yelon, W. B., Phys. Rev. B 29, 4176 (1984).Google Scholar
2. Croat, J. J., Herbst, J. F., Lee, R. W., and Pinkerton, F. E., Appl. Phys. Lett. 44, 148 (1984).Google Scholar
3. Croat, J. J., Herbst, J. F., Lee, R. W., and Pinkerton, F. E., J. Appl. Phys. 55, 2078 (1984).Google Scholar
4. Doser, M., Ribitch, R., Croat, J. J., and Panchanathan, V., 35th Annual Conf. on Magn. and Magn. Mater., San Diego, CA, October 29-November 1, 1990, paper GA-07, and to appear in J. Appl. Phys.Google Scholar
5. Lee, R. W., Appl. Phys. Lett. 46, 790 (1985).CrossRefGoogle Scholar
6. Lee, R. W., Brewer, E. G., and Schaffel, N. A., IEEE Trans. Magn. MAG–21, 1958 (1985).Google Scholar
7. Croat, J. J., J. Less-Common Metals 148, 7 (1989).Google Scholar
8. Herbst, J. F., Lee, R. W., and Pinkerton, F. E., Ann. Rev. Mater. Sci. 16,467 (1986).Google Scholar
9. Mishra, R. K., J. Magn. Magn. Mater. 54–57, 450 (1986).Google Scholar
10. Taylor, R. C., McGuire, T. R., Coey, J. M. D., and Gangulee, A., J. Appl. Phys. 49, 2885 (1978).Google Scholar
11. Matsuura, Y., Hirosawa, S., Yamamoto, H., Fujimura, S., Sagawa, M., and Osamura, K., Jpn. J. Appl. Phys. 24, L635 (1985).Google Scholar
12. Buschow, K. H. J., Mater. Sci. Rep. 1, 1 (1986).Google Scholar
13. Pinkerton, F. E. and Van Wingerden, D. J., J. Appl. Phys. 60, 3685 (1986).Google Scholar
14. E. C. Stoner arid Wohlfarth, E. P., Philos. Trans. Roy. Soc. London A 240, 599 (1948).Google Scholar
15. Pinkerton, F. E., IEEE Trans. Magn. MAG–22, 922 (1986).CrossRefGoogle Scholar
16. Gronefeld, M. and Kronmuller, H., J. Magn. Magn. Mater. 88, L267 (1990).CrossRefGoogle Scholar
17. Gaunt, P., Hadjipanayis, G., and Ng, D., J. Magn. Magn. Mater. 54–57, 841 (1986).Google Scholar
18. Wohlfarth, E. P., J. Appl. Phys. 29, 595 (1958).Google Scholar
19. Pinkerton, F. E., J. Appl. Phys. 63, 5427 (1988).Google Scholar
20. Hadjipanayis, G. C. and Gong, W., J. Magn. Magn. Mater. 66, 390 (1987).Google Scholar
21. Mishra, R. K. and Lee, R. W., Appl. Phys. Lett. 48, 733 (1986).Google Scholar
22. Pinkerton, F. E. and Fuerst, C. D., J. Appl. Phys. 67, 4753 (1990).Google Scholar
23. Sagawa, M., Hirosawa, S., Tokuhara, K., Yamamoto, H., Fujimura, S., Tsubokawa, Y., and Shimizu, R., J. Appl. Phys. 61, 3559 (1987).Google Scholar
24. Sagawa, M. and Hirosawa, S., J. Mater. Res. 3, 45 (1988).Google Scholar
25. Kronmuller, H., Durst, K., and Sagawa, M., J. Magn. Magn. Mater. 74, 291 (1988).Google Scholar
26. Pinkerton, F. E., J. Appl. Phys. 64, 5565 (1988).Google Scholar
27. Spada, F., Abache, C., and Oesterreicher, H., J. Less-Common Met. 99, L21 (1984).CrossRefGoogle Scholar
28. Givord, D., Li, H. S., and Perrier de la Bathie, R., Solid State Commun. 51, 857 (1984).Google Scholar
29. Pinkerton, F. E. and Fuerst, C. D., J. Magn. Magn. Mater. 89, 139 (1990).Google Scholar
30. Pinkerton, F. E. and Fuerst, C. D., to appear in J. Appl. Phys.Google Scholar
31. Gaunt, P., Philos. Mag. B 48, 261 (1983).CrossRefGoogle Scholar
32. Gaunt, P., Can. J. Phys. 65, 1194 (1987).Google Scholar
33. Hock, St. and Kronmuller, H., in: Proc. 5th Intern. Symp. on Magnetic Anisotropy and Coercivity in Rare Earth-Transition Metal Alloys, eds. Herget, D., Kronmuller, H., and Poerschke, R. (Deutsche Physikalische Gesellschaft e.V., D-5340 Bad Honnef 1, FRG, 1987) p. 275.Google Scholar
34. Hirosawa, S., Matsuura, Y., Yamamoto, H., Fujimura, S., Sagawa, M., and Yamauchi, H., J. Appl. Phys. 59, 873 (1986).Google Scholar
35. Grossinger, R., Sun, X. K., Eibler, r., Buschow, K. H. J., and Kirchmayr, H. R., J. Magn. Magn. Mater. 58, 55 (1986).Google Scholar