Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-12T00:23:07.512Z Has data issue: false hasContentIssue false

The Microscopic Structure Of Shallow Donors In Silicon Carbide

Published online by Cambridge University Press:  15 February 2011

J.-M. Spaeth
Affiliation:
Department of Physics, University of Paderborn, 33095 Paderborn, Germany
S. Greulich-Weber
Affiliation:
Department of Physics, University of Paderborn, 33095 Paderborn, Germany
M. März
Affiliation:
Department of Physics, University of Paderborn, 33095 Paderborn, Germany
E. N. Kalabukhova
Affiliation:
Institute of Semiconductors, Kiev, Ukraine
S. N. Lukin
Affiliation:
Institute of Semiconductors, Kiev, Ukraine
Get access

Abstract

The electronic structure of nitrogen donors in 6H-, 4H- and 3C-SiC is investigated by measuring the nitrogen hyperfine (hf) interactions with electron nuclear double resonance (ENDOR) and the temperature dependence of the hf split electron paramagnetic resonance (EPR) spectra. Superhyperfine (shf) interactions with many shells of 13C and 29Si were measured in 6H-SiC. The hf and shf interactions are discussed in the framework of effective mass theory. The temperature dependence is explained with the thermal occupation of the lowest valley-orbit split A1 and E states. It is proposed that the EPR spectra of P donors observed previously in neutron transmuted 6H-SiC at low temperature (<10K) and high temperature (>60K) are all due to substitutional P donors on the two quasi-cubic and hexagonal Si sites, whereby at low temperature the E state is occupied and at high temperature the A1 state. The low temperature spectra are thus thought not to be due to P-vacancy pair defects as proposed previously.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Woodbury, H. H. and Ludwig, G. W.. Phys. Rev 124 1033 (1961)Google Scholar
2. Altaiskii, Yu.M., Zaritskie, I. M., Zevin, V.Ya. and Konchits, A. A., Sov. Phys. Solid State 12 2453 (1971)Google Scholar
3. Kalabukhova, E. N., Lukin, S. N., Shanina, B. D., Artamona, L. V., Mokhov, E. N., Sov. Phys. Solid State 32 482–6 (1980)Google Scholar
4. Kalabukhova, E. N., Kabdin, N. N., Lukin, S. N., Sov. Phys. Solid State 29 1461–2 (1987)Google Scholar
5. Greulich-Weber, S., Feege, M., Spaeth, J.-M., Kalabukhova, E. N., Lukin, S. N. and Mokhov, E. N., Solid Sate Commun. 93 393 (1995)Google Scholar
6. Veinger, A. I., Zabrodskii, A. G., Lomakina, G. A. and Mokhov, E. N., Sov. Phys. Solid State 28 917(1986)Google Scholar
7. Kohn, W. and Luttinger, J. M., Phys. Rev. 97 4 p883 (1955)Google Scholar
8. Patrick, L., Choyke, W. J., Phys. Rev. B2 p2255 (1970)Google Scholar
9. Yoshida, S., in Properties of Silicon Carbide, ed. Harris, G. L., IEE, inspec, p69 (1995)Google Scholar
10. Wilson, D. K. and Feher, G., Phys. Rev. 124 4 (1961)Google Scholar
11. Colwell, P. J. and Klein, M. V., Phys. Rev. B6 2 p498 (1972)Google Scholar
12. Goetz, W., Pensl, G., Choyke, W. J., Stein, R., Leibenzeder, S., J. Appl. Phys. 72 p3332 (1993)Google Scholar
13. Suttrop, W., Pensl, G., Choyke, W. J., Stein, R., Leibenzeder, S., J. Appl. Phys. 72 p3708 (1992)Google Scholar
14. Kisielowski, C., Maier, K., Schneider, J. and Oding, V., Mat. Sci. Forum 83–87 p1171 (1992)Google Scholar
15. Spaeth, J.-M., Niklas, J. R. and Bartram, R. H., Structural Analysis of Point Defects in Solids, Series of Solid State Sciences 43 (1992)Google Scholar
16. Carlos, W. E., in Properties of Silicon Carbide, ed. Harris, G. L., IEE, inspec, p42 (1995)Google Scholar
17. Käckel, P., Wenzien, B., Bechstedt, F., Phys. Rev. B50 (15) 10761 (1994)Google Scholar
18. Feege, M., Doctoral Thesis, Paderborn, 1995 Google Scholar
19. Troffer, T., Peppermüller, C., Pensl, G., Rottner, K. and Schöner, A., J. Appl. Phys. 80 (7) (1996)Google Scholar