Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-07-25T19:54:29.032Z Has data issue: false hasContentIssue false

Microcrystalline Silicon n-i-p Solar Cells Deposited Entirely by the Hot-Wire Chemical Vapor Deposition Technique

Published online by Cambridge University Press:  10 February 2011

Qi Wang
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd. Golden, CO
Eugene Iwaniczko
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd. Golden, CO
A. H. Mahan
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd. Golden, CO
D. L. Williamson
Affiliation:
Department of Physics, Colorado School of Mines, Golden, CO
Get access

Abstract

We describe a series of microcrystalline (μc) silicon n-i-p solar cell devices fabricated entirely by the hot-wire chemical vapor deposition technique. These devices are deposited on flat stainless-steel at a substrate temperature below 250°C, and are evaluated using solar-cell performance and quantum-efficiency (QE) measurements. We explore the effect of crystallite size, as examined by X-ray diffraction, by varying the hydrogen-to-silane ratio from 5 to 40, while keeping the μc-n and the μc-p layers the same. We find a significant blue shift of the QE peak and an enhancement of red response compared with a standard a-Si:H solar cell. The blue shift increases with increasing hydrogen-to-silane ratio. We attribute this shift to the i-layer becoming more n-type with increasing hydrogen dilution. We also use a hydrogen gas purifier and find a large improvement in device performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Meier, J., Torres, P., Platz, R., Dubail, S., Kroll, U., Selvan, J.A. Anna, Vaucher, N. Pellaton, Hof, Ch., Fischer, D., Keppner, H., Shah, A., Ufert, K.D., Giannoules, P., Koehler, J., Mat. Res. Soc. Symp. Proc. MRS. 420, 3 (1996).Google Scholar
2 Baba, T., Matsuyama, T., Tsuge, S., Wakisaka, K., and Tsuda, S., Proc. 13th Europ. PVSEC, (Nice 1995), p. 1708.Google Scholar
3 Schropp, R.E.I., Feenstra, K.F., Werf, C.H.M. Van Der, Holleman, J., and Meiling, H., Mat. Res. Soc. Symp. Proc. MRS. 420, 109 (1996).Google Scholar
4 Rath, J.K., Zutphen, A.J.M.M. van, Meiling, H., and Schropp, R.E.I, Mat. Res. Soc. Symp. Proc. MRS. 467, 445 (1997).Google Scholar
5 Peiro, D., Bertomeu, J., Voz, C., Asensi, J.M., Puigdollers, J., and Andreu, J., in 17th International Conference on Amorphous and Microcrystalline Semiconductors, Budapest, 1997, in press.Google Scholar
6 Brummack, H., Bruggemann, R., Wanka, H.N., Hierzenberger, A., and Schubert, M.B., in 17th International Conference on Amorphous and Microcrystalline Semiconductors, Budapest, 1997, in press.Google Scholar
7 Conde, J.P., Brogueira, P., Castanha, R., and Chu, C., Mat. Res. Soc. Symp. Proc. MRS. 420, 357(1996).Google Scholar
8 Vanecek, M., Mahan, A.H., Nelson, B.P., and Crandall, R.S., Proc. 11th European PVSolar Energy Conf. Edited by Guimaraes, L., Palz, W., Dereyff, C., Kiess, H., and Helm, P. (Harwood Acad. Publ., Switzerland, 1993), p. 96.Google Scholar
9 Wang, C. and Lucovsky, G., 21th IEEE (1990). J. Non-Cryst. Solids 137&138, p. 1614; and M.J. Williams, C. Wang, G. Lucovsky, J. Non-Cryst. Solids 137&138, (1991), p. 737.Google Scholar
10 Fischer, D. and Shah, A., Appl. Phys. Lett. 65 (1994), p. 986.Google Scholar