Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-12T11:30:03.594Z Has data issue: false hasContentIssue false

Microanalytical Tem Studies of Ceramic Materials

Published online by Cambridge University Press:  25 February 2011

Ewald Bischoff
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaften, Seestrasse 92, D-7000 Stuttgart 1, Federal Republic of Germany
Manfred Rühle
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaften, Seestrasse 92, D-7000 Stuttgart 1, Federal Republic of Germany
Get access

Abstract

Frequently, the processing of dense, strong, and tough ceramics requires the addition of sintering aids. The materials are therefore composed of various components. For the understanding of the properties of the ceramics it is essential that the microstructure and the distribution of the different components within the material are known. The possibilities and limitations of microanalytical TEM studies will be described for different structural ceramics, e.g. ZrO2 , NiO, SiC, and SiAlON.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Crawford, J. H., Chen, Y., Sibley, W. A. (eds.), Perfect Properties and Processing of High Technology Nonmetallic Materials, MRS Symposia Proceedings Vol.24, North Holland Publishing (1984).Google Scholar
[2] Claussen, N., Ruhle, M. and Heuer, A. H., The Science and Technology of Zirconia, Advances in Ceramics 12 (1984).Google Scholar
[3] Hren, J. J., Goldstein, J. I. and Joy, D. C. (eds.), Introduction to Analytical Electron Microscopy, Plenum Press, New York and London (1979).10.1007/978-1-4757-5581-7Google Scholar
[4] Reimer, L., Transmission Electron Microscopy - Physics of Image Formation and Microanalysis, Springer-Verlag Berlin, Heidelberg, New York, Tokyo (1984).10.1007/978-3-662-13553-2Google Scholar
[5] Lorimer, G. W., Jacobs, M. H., Doig, P. (eds.), Quantitative Microanalysis with High Spatial Resolution, The Metal Society, London (1981).Google Scholar
[6] Cliff, G. and Lorimer, G.W., J. Microscopy 103 (1975) 203.10.1111/j.1365-2818.1975.tb03895.xCrossRefGoogle Scholar
[7] Fraser, H. L. and McCarthny, J.P., in: Microbeam Analysis 1982 (ed. Heinrich, K. F. J.), San Francisco Press (1982) 93.Google Scholar
[8] Brown, J. M., Loretto, M. H. and Fraser, H. L., in: Analytical Electron Microscopy 1981 (ed. Geiss, R. H.), San Francisco Press (1981) 61.Google Scholar
[9] Zaluzec, N., to be published.Google Scholar
[10] Zaluzec, N., in [3], p. 121.Google Scholar
[11] Goldstein, J. I., in [3], p. 83.Google Scholar
[12] Williams, D. B., Goldstein, J. I., Fiori, C. I. and Newbury, D. E., J. of Microscopy, to be published.Google Scholar
[13] Bethe, H. A., Ann. Physik (Leipzig) 1 (1930) 325.10.1002/andp.19303970303Google Scholar
[14] Bethe, H. A., Zeitschrift f. Physik 76 (1932) 293.10.1007/BF01342532Google Scholar
[15] Inokuti, M., Rev. Mod. Phys. 43 (1971) 297.10.1103/RevModPhys.43.297Google Scholar
[16] Scofield, J. H., Phys. Rev. A 18 (1978) 963.10.1103/PhysRevA.18.963Google Scholar
[17] Burhop, E. l. S., J. Phys. Radium 16 (1955) 625.10.1051/jphysrad:01955001607062500Google Scholar
[18] Bambynek, W., Crasemann, B., Fink, R.W., Freund, H.U., Mark, H., Swift, C.D., Proce, R.E. and Rao, P.V., Rev. Mod. Phys. 44 (1972) 716.10.1103/RevModPhys.44.716Google Scholar
[19] Colby, J., Advances in X-ray Analysis 11 (1968) 287.10.1154/S0376030800004924Google Scholar
[20] Schreiber, T. P. and Wims, A. M., X-ray Spectrometry 11 (1982) 42.10.1002/xrs.1300110203CrossRefGoogle Scholar
[21] Goldstein, J. I., Costley, J. L., Lorimer, G. W. and Reed, S. J. B., SEM 1977 IITRI Chicago/Il (1977) 315.Google Scholar
[22] Cliff, G. and Lorimer, G. W., in: Quantitative Microanalysis with High Spatial Resolution, The Metals Society, London (1981) 47.Google Scholar
[23] Rez, P., Ultramicroscopy 12 (1983) 29.10.1016/0304-3991(83)90302-9Google Scholar
[24] Bothe, W., Sitzungsber. Heidel. Akad. Wiss. 7 (1951) 307.Google Scholar
[25] Thiimmel, H. W., Durchgang von Elektronen- und Betastrahlen durch Materialschichten, Akademie-Verlag Berlin (1974).Google Scholar
[26] Hutchings, R., Loretto, M.H., Jones, I.P., Smallman, R.E., Ultramicroscopy 1 (1979) 401.Google Scholar
[27] Philibert, J. and Tixier, R., Brit. J. Appl. Phys. 1 (1968) 685.Google Scholar
[28] Sande, J. B. Vander, Garrett-Reed, A.J., Chiang, Y.-M. and Thorvaldson, T., Ultramicroscopy 14 (1984) 65.10.1016/0304-3991(84)90108-6Google Scholar
[29] Ruble, M., Bischoff, E. and David, O., Ultramicroscopy 14 (1984) 37.Google Scholar
[30] Cliff, G. and Kenway, P.B., in: Microbeam Analysis 1982 (edt. Heinrich, K.F.J.), San Francisco Press (1982) 107.Google Scholar
[31] Scott, G.G., J. Mater. Sci. 10 (1975) 1527.10.1007/BF01031853Google Scholar
[32] Stubican, V.S., Hink, R.C. and Ray, S.P., J. Am. Ceram. Soc. 61 (1978) 17.10.1111/j.1151-2916.1978.tb09220.xGoogle Scholar
[33] Lange, F. F., in: Fracture Mechanics of Ceramics (Bradt, R.C., Evans, A.G., Hasselmann, D.P.H., and Lange, F.F., eds.), Plenum Press, New York, Vol.6, pp. 255–74 (1983).Google Scholar
[34] Riley, F. L. (ed.), Progress in Nitrogen Ceramics, NATO Applied Science Series No. 65, Martinus Nijhoff Publishers, Boston (1983).10.1007/978-94-009-6851-6Google Scholar
[35] Greil, P. and Weiss, J., J. Mat. Sci. 17 (1982) 1571.10.1007/BF00540780Google Scholar
[36] Greil, P.. Ph.D. Thesis, University of Stuttgart, 1982.Google Scholar
[37] Bressiani, A. H., Ph. D. Thesis, University of Stuttgart (1984).Google Scholar