Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-07-26T17:20:10.724Z Has data issue: false hasContentIssue false

Metastable Phases Produced In Nickel By High Dose La And 0 Implantation, And Pulsed Laser Melt Quenching

Published online by Cambridge University Press:  26 February 2011

D.K. Sood
Affiliation:
Microelectronics Technology Centre, Royal Melbourne Institute of Technology, Melbourne 3000, Australia.
A.P. Pogany
Affiliation:
Microelectronics Technology Centre, Royal Melbourne Institute of Technology, Melbourne 3000, Australia.
G. Battaglin
Affiliation:
Departimento di Fisica, Universita di Padova, Via Mazzolo n.8, 35131 Padova, Italy.
A. Carnera
Affiliation:
Departimento di Fisica, Universita di Padova, Via Mazzolo n.8, 35131 Padova, Italy.
G. Della Mea
Affiliation:
Departimento di Fisica, Universita di Padova, Via Mazzolo n.8, 35131 Padova, Italy.
V.L. Kulkarni
Affiliation:
Departimento di Fisica, Universita di Padova, Via Mazzolo n.8, 35131 Padova, Italy.
P. Mazzoldi
Affiliation:
Departimento di Fisica, Universita di Padova, Via Mazzolo n.8, 35131 Padova, Italy.
J. Chaumont
Affiliation:
Laboratoire Rene Bernas, Universite Paris XI, 91406 Orsay, France.
Get access

Abstract

Nickel single crystals implanted with La, 0 and La + 0, up to about 9 a/o concentrations were irradiated with spatially homogenised ruby laser pulses (16 ns FWHM) up to 3.7 J/cm2 in vacuum (s~ 10−2 Torr). Phase changes, defect structure and solute migration were studied before and after laser melt quenching using RBS/channeling, TEM and SEM techniques.

Both La and La + 0 implants produced a buried amorphous layer on top of a polycrystalline layer above the single crystal matrix. 0 implants did not produce an amorphous phase, but a buried layer containing polycrystalline Ni, metastable hcp Ni particles and a dense dislocation network was formed. Pulsed laser melt quenching of these implanted metastable phases lead to a variety of new phases - all crystalline.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sood, D.K., Radiation Effects 63, 141 (1982).CrossRefGoogle Scholar
2. Picraux, S.T. and Follstaadt, D.M. in Surface Modification and Alloying by Laser, Ion and Electron Beams, ed. Poate, J.M., Foti, G. and Jacobson, D.C. (Plennum Press, New York, 1983), p.287.Google Scholar
3. Battaglin, G., Camera, A., Mea, G. Della, Rose, L.F. Dona dalle, Kulkarni, V.N., Mazzoldi, P., Miotells, A., Janitti, E., Jain, A.K., Sood, D.K. and Chaumont, J., J. Appl. Phys. 55, 3779 (1984).Google Scholar
4. Biersack, J. P. and Ziegler, J.F. in Ion Implantation Techniques, eds. Ryssel, H. and Glawischnig, H. (Springer-Verlag, Berlin, 1982), p.157.Google Scholar
5. Al-Tamimi, Z.Y., Grant, W.A. and Grundy, P.J. (to be published); Nucl. Instrum. Meth. 209/210, 363 (1983).Google Scholar
6. Hansen, M., Constitution of Binary Alloys (McGraw Hill, New York, 1958).Google Scholar
7. Sood, D.K., Radiation Effects Lett. 67, 13 (1981).CrossRefGoogle Scholar
8. Sood, D.K. and Pogany, A.P. (to be published).Google Scholar