Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-11T06:58:30.641Z Has data issue: false hasContentIssue false

Metal Organic Chemical Vapour Deposition Growth of Epitaxial ZnSe/ZnS Multiple Layered Structures

Published online by Cambridge University Press:  26 February 2011

Heather M Yates
Affiliation:
Department of Chemistry, UMIST, P.O. Box 88, Sackville Street, Manchester M60 1QD, England
John O Williams
Affiliation:
Department of Chemistry, UMIST, P.O. Box 88, Sackville Street, Manchester M60 1QD, England
Get access

Abstract

ZnSe-ZnS multilayers have been prepared by atmospheric. pressure metal organic chemical vapour deposition (M0CVD) using dimethylzinc, hydrogen sulphide and hydrogen selenide. Layer thicknesses down to 500Å have been obtained and the interfaces, as measured by secondary ion mass spectroscopy (SIMS) and electron microscopy, are regular. A notable improvement in interface abruptness was observed with better control of experimental procedures and more especially with the growth of a ZnSe buffer layer between the GaAs(100) substrate and multilayers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hua, Y.L., Petty, M.C., Roberts, G.G., Ahmad, M.M., Yates, H.M., Maung, N., Williams, J.O., Electron. Lett., 23, 231 (1987).Google Scholar
2.Fan, G., Williams, J.O., Mater. Lett., 3, 453 (1985).Google Scholar
3.Yates, H.M., Maung, N., McDonald, M., Williams, J.O., Chemtronics, 2, 26 (1987).Google Scholar
4.Yates, H.M., Williams, J.O., Appl. Phys. Lett., 51, 809 (1987).Google Scholar
5.Cockayne, B., Wright, P.J., Blackmore, G.W., Williams, J.O., Ng, T.L., J. Mater. Sci., 19, 3726 (1986).Google Scholar
6.Matthews, J.W., Blakeslee, A.E., J. Cryst. Growth, 27, 118 (1974).Google Scholar
7.Taike, A., Teraguchi, N., Konagai, M., Takahashi, K., Jpn. J. Appl. Phys., 26, L989 (1987).Google Scholar
8.Yokogawa, T., Ogura, M., Kajiware, T., Appl. Phys. Lett., 49, 1702 (1986).Google Scholar
9.Yates, H.M. (unpublished work).Google Scholar
10.Maung, N., PhD Thesis, University of Manchester (1988).Google Scholar
11.Magee, C.W., Honig, R.E., Surf. Interface Anal., 4, 35 (1982).Google Scholar
12.Dupuis, R.D., Miller, R.C., Petroff, P.M., J. Cryst. Growth, 68, 398 (1984).Google Scholar
13.Griffiths, R.J.M., Chew, N.G., Cullis, A.G., Joyce, G.C., Electron Lett., 19, 988 (1983).Google Scholar
14.Kakibayashi, H., Nagata, F., Surf. Sci., 174, 84 (1986).Google Scholar
15.Fujita, S., Matsuda, Y., Sasaki, A., J. Cryst. Growth, 68, 231 (1984).Google Scholar