Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-18T14:39:59.157Z Has data issue: false hasContentIssue false

Mechanical Property and Microstructure of TZP and TZP/Al2O3 Composites

Published online by Cambridge University Press:  25 February 2011

Koji Tsukuma
Affiliation:
Tokyo Research Center, Toyo Soda Manufacturing, Company, Hayakawa, Ayase-shi, Kanagawa 252, Japan
Tsutomu Takahata
Affiliation:
Tokyo Research Center, Toyo Soda Manufacturing, Company, Hayakawa, Ayase-shi, Kanagawa 252, Japan
Get access

Abstract

There are various types of microstructure in the TZP materials and their composite materials. The fine-grained microstructure is well-known as the basic microstructural type of TZP materials. Y-TZP and Ce-TZP belong to this group. The large-grained microstructure can exist in the TZP consisting of the tetragonal phase with low metastability, that is, Y-TZP doped with TiO2 and Ce-TZP containing a high CeO2 content. The composite material between Y-TZP and β-lanthanum alumina possessed a unique microstructure including elongated grains of β-Al2O3 type structure. This study provides a summary of the mechanical properties of these TZP and β-Al2O3 type structure composite materials, and points out how the mechanical behavior depends on the microstructural features.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gupta, T. K., Betchtold, J. H., Kuzniki, R. C., Kadoff, L. H., and Rossing, B. R., J. Mat. Sci., 12, 2421–6 (1977).Google Scholar
2. Lange, F. F., J. Mat. Sci., 17, 240–6 (1982).Google Scholar
3. Tsukuma, K. and Shimada, N., Am. Soc. Bull., 64(2), 310–13 (1984).Google Scholar
4. Matsui, N., Soma, T., and Oda, I., Advances-in Ceramics, Vol.12, Science and Technology of Zirconia II, edited by Claussen, N., Rühle, M., and Heuer, A. H., (Am. Ceram. Soc. Inc., 1984), 371–8.Google Scholar
5. Watanabe, M., Iio, S., and Fukuura, I., Advances in Ceramics, Vol 12, Science and Technology of Zirconia II, edited by Claussen, N., Rühle, N., and Heuer, A. H., (Am. Ceram. Soc. Inc., 1984), 391–8.Google Scholar
6. Masaki, T., J. Am. Ceram. Soc., 69(7), 519–22 (1986).Google Scholar
7. Tsukuma, K., Ueda, K., and Shimada, N., J. Am. Ceram. Soc., 68(1), c4 (1985).Google Scholar
8. Tsukuma, K. and Shimada, N., J. Mat. Sci., 20, 1178–84 (1985).Google Scholar
9. Tsukuma, K., Zirconia Ceramics 8, edited by S., Somiya and N., Yoshimura, (Uchida-roho-kaku, Tokyo, 1986) 1120.Google Scholar
10. Tsukuma, K., Am. Ceram. Soc. Bull., 65(10), to be published (1986).Google Scholar
11. Lange, F. F., J. Am. Ceram. Soc., 69(3) 240–42 (1986).Google Scholar
12. Tsukuma, K., J. Mat. Sci. Lett., to be published (1986).Google Scholar
13. Hannink, R. H. J., J. Mat. Sci.,13, 2487–96 (1978).CrossRefGoogle Scholar
14. Tsukuma, K., Ueda, K., and Shmada, M., J. Am. Ceram. Soc., 68(2), c56 (1985).Google Scholar
15. Swain, M. V. and Rose, L. R. F., J. Am. Ceram. Soc., 69(7), 511–18 (1986).Google Scholar
16. Wakai, F., Sakaguchi, S., and Matsuno, Y., Adv. Ceram. Mater., 1, 3 (1986).Google Scholar