Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-23T12:21:44.575Z Has data issue: false hasContentIssue false

Mechanical Behavior and Constitutive Modeling During High Temperature Deformation of Al Laminated Metal Composites

Published online by Cambridge University Press:  10 February 2011

R. B. Grishaber
Affiliation:
Department of Chemical Engineering and Material Science, University of California, Davis, California 95616, U.S.A., rbgrishaber@ucdavis.edu
R. S. Mishra
Affiliation:
Department of Chemical Engineering and Material Science, University of California, Davis, California 95616, U.S.A., rbgrishaber@ucdavis.edu
A. K. Mukherjee
Affiliation:
Department of Chemical Engineering and Material Science, University of California, Davis, California 95616, U.S.A., rbgrishaber@ucdavis.edu
Get access

Abstract

A constitutive model for deformation of a novel laminated metal composite (LMC) which is comprised of 21 alternating layers of Al 5182 alloy and Al 6090/SiC/25p metal matrix composite (MMC) has been proposed. The LMC as well as the constituent or neat structures have been deformed in uniaxial tension within a broad range of strain-rates (i.e. 10−5 to 100 s−1) and homologous temperatures (i.e. 0.8 ≥ 0.95 Tm). The results of these experiments have led to a thorough characterization of the mechanical behavior and a subsequent semiempirical constitutive rate equation for both the Al 5182 and Al 6090/SiC/25p when tested monolithically. These predictive relations have been coupled with a proposed model which takes into account the dynamic load sharing between the elastically stiffer and softer layers when loaded axially during isostrain deformation of the LMC. This model has led to the development of a constitutive relationship between flow stress and applied strain-rate for the laminated structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Syn, C. K., Lesuer, D. R. and Sherby, O. D. in Light Materials for Transportation Systems, ed. Kim, N. J., (Center for Advanced Aerospace Materials, Kyongju, Korea, 1993), p. 763.Google Scholar
2. Lesuer, D., Syn, C., Riddle, R., Sherby, O., to be published in Symposium on Intrinsic and Extrinsic Fracture Mechanisms in Discontinuously Reinforced Inorganic Composite Systems (TMS Meeting, Las Vegas, NV, 1995).Google Scholar
3. Manoharan, M., Ellis, L., Lewandowski, J. J., Scripta Met. et Mater., 24, 1515 (1990).Google Scholar
4. Ritchi, R. O., Yu, W., and Bucci, R. J., Eng. Fract. Mechanics, 32, 362 (1989).Google Scholar
5. Syn, C. K., Stoner, S., Lesuer, D. R., Sherby, O. D., to be published in Symposium on High Performance Ceramic & Metal Matrix Composites (TMS Meeting, San Francisco, CA, 1994).Google Scholar
6. Osman, T. M., M. S. Thesis, Case Western Reserve University, 1993.Google Scholar
7. Hunt, W. H., Osman, T. M. and Lewandowski, J. J., J.O.M., 45, 30 (1993).Google Scholar
8. McKimpson, M. B., Pohlenz, E. L. and Thompson, S. R., J.O.M., 45, 26 (1993).Google Scholar
9. Nabarro, F. R. N., Rep. Conf. Strength Solids, 1948, 7590.Google Scholar
10. Herring, C., Applied Physics, 21, 437 (1950).Google Scholar
11. Coble, R. L., Applied Physics, 34, 1679 (1963).Google Scholar
12. Harper, J. and Dorn, J. E., Acta Metall., 5, 654 (1957).Google Scholar
13. Fiala, J. and Langdon, T. G., Mater. Sci. Engr., A151, 147 (1992).Google Scholar
14. Ruano, O. A., Wolfenstine, J., Wadsworth, J. and Sherby, O. D., Acta Metall., 39, 661 (1991).Google Scholar
15. Baudelet, B., Dang, M. C., Bourdeaux, F., Scripta Metall. Mater., 26, 573 (1992).Google Scholar
16. Lee, D. H., Hong, K. T., Shin, D. H. and Nam, S. W., Mater. Sci. Engr., A156, 43 (1992).Google Scholar
17. Mills, M. J., Gibeling, J. C. and Nix, W. D., Acta Metall., 33, 1503 (1985).Google Scholar
18. Mukherjee, A. K. in Materials Science and Technology, eds. Cahn, R. W., Haasen, P. and Kramer, E. J., vol. ed. Mughrabi, H., (VCH, 6, 1993) pp. 407460.Google Scholar
19. Pandey, A. B., Mishra, R. S. and Mahajan, Y. R., Scripta Metall., 24, 1565 (1990).Google Scholar
20. Mukherjee, A. K., Bird, J. E. and Dom, J. E., Trans. ASM, 62, 155 (1969).Google Scholar
21. Mukherjeein, A. K. Treatise on Materials Science and Technology, ed. Arsenault, R. J., Vol. 6, 163 (1975).Google Scholar
22. Sherby, O. D. and Wadsworth, J. in Progress in Materials Science, Vol. 33, 169 (1989).Google Scholar
23. Frost, H. J. and Ashby, M. F., Deformation-Mechanism Maps (Pergamon Press, Oxford, 1982), p. 12.Google Scholar
24. Mishra, R. S., Paradkar, A. G. and Rao, K. N., Acta Metall., 41, 2243 (1993).Google Scholar
25. Mishra, R. S. and Mukherjee, A. K., Scripta Metall., 25, 271 (1991).Google Scholar
26. Bieler, T. R., Mishra, R. S. and Mukherjee, A. K. in Materials Science Forums, Vols. 170–172, 65 (1994).Google Scholar
27. Mishra, R. S., Bieler, T. R. and Mukherjee, A. K., Acta Metall. Mater., 43, 877 (1995).Google Scholar
28. Lilholt, H. in Mechanical Properties of Metallic Composites, ed. Ochiai, S. (Marcel Dekker, Inc., NY, 1994), pp. 389471.Google Scholar
29. McDanels, D., Signorelli, R. A. and Weeton, J. W., NASA Report TN-4173 (1967).Google Scholar
30. Kelly, A. and Street, K. N., Proc. R. Soc., A328, 267 (1972a).Google Scholar
31. Kelly, A. and Street, K. N., Proc. R. Soc., A328, 283 (1972b).Google Scholar
32. Goto, S. and McLean, M., Scripta Metall., 23, 2073 (1989).Google Scholar
33. Goto, S. and McLean, M., Acta Metall., 39, 153 (1991).Google Scholar
34. Goto, S. and McLean, M., Acta Metall., 39, 165 (1991).Google Scholar