Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-25T19:55:21.821Z Has data issue: false hasContentIssue false

Luminescence Study of The INTRA-4f Emissions from GaAs:(Er+O) and AlxGal1−xAs:(Er+O)

Published online by Cambridge University Press:  21 February 2011

Jose E. Colon
Affiliation:
Air Force Institute of Technology, Wright-Patterson Air Force Base, OH 45433
David W. Elsaesser
Affiliation:
Air Force Institute of Technology, Wright-Patterson Air Force Base, OH 45433
Yung Kee Yeo
Affiliation:
Air Force Institute of Technology, Wright-Patterson Air Force Base, OH 45433
Robert L. Hengehold
Affiliation:
Air Force Institute of Technology, Wright-Patterson Air Force Base, OH 45433
Gernot S. Pomrenke
Affiliation:
Air Force Office of Scientific Research, Boiling Air Force Base, Washington, D.C. 20332
Get access

Abstract

A systematic photoluminescence study of erbium and oxygen co-implantation into GaAs and AlxGal1−xAs with × = 0.1, 0.2, 0.3, and 0.4 was carried out. The addition of oxygen greatly enhanced the Er emission intensity from AlxGal1−xAs:Er while the O and Er co-doping into GaAs rather made the Er emission intensity decrease from that of the GaAs:Er. The Er emission intensity from AlxGal1−xAs:(Er+O) generally increases with increasing Al mole fraction and O dose up to 1 × 10 15/cm2, but it does not depend much on the substrate conductivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ennen, H. and Schneider, J. in Thirteenth International Conference on Defects in Semiconductors, edited by Kimerling, L. C. and Parsey, J. M. Jr. (1989), pp. 115127.Google Scholar
2. Rochaix, C., Rolland, A., Favennec, P. N., Lambert, B., Corre, A. Le, L'Harridon, H., and Salvi, M., Jap. J. Appl. Phys. 27 (12), L2348–L2350 (1988).Google Scholar
3. Favennec, P. N., L'Harridon, H., Salvi, M., Moutonnet, D., and Gillou, Y. Le, Electr. Lett. 25 (11), 718719 (1989).Google Scholar
4. Nakagome, H., Uwai, K., and Takahei, K., Appl. Phys. Lett., 53 (8), 17261728 (1988).Google Scholar
5. Boyn, R., phys. stat. sol. (b), 148 (11), 1147 (1988).Google Scholar
6. Auzel, F., Jean-Louis, A. M., Toudic, Y., J. Appl. Phys. 66 (8), 39523955 (1989).Google Scholar
7. Galtier, P., Benyattou, T., Pocholle, J. P., Charasse, C. N., Guillot, G., and Hirtz, J. P., in GaAs and Related Compounds, 1989, pp. 327332.Google Scholar
8. Favennec, P. N., L'Harridon, H., Moutonnet, D., Salvi, M., and Gaunneau, M., Jap. J. Appl. Phys. 29 (4), L524–L526 (1990).Google Scholar
9. Benton, J. L., Michel, J., Kimerling, L. C., Jacobson, D. C., Xie, Y. -H, Eaglesham, D. J., Fitzgerald, E. A., and Poate, J. M., J. Appl. Phys. 70 (5), 26672671 (1991).Google Scholar
10. Colón, J. E., Elsaesser, D. W., Yeo, Y. K., Hengehold, R. L., and Pomrenke, G. S. 1993 (To be published).Google Scholar