Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-db5sh Total loading time: 0.144 Render date: 2021-06-13T02:23:22.886Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Luminescence of TM3+ in Gallium Arsenide Grown by Metal-Organic Vapor Phase Epitaxy

Published online by Cambridge University Press:  21 February 2011

Achim DÖrnen
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-W-7000 Stuttgart 80, Box 80 11 40, Federal Republic of Germany
Klaus Pressel
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-W-7000 Stuttgart 80, Box 80 11 40, Federal Republic of Germany
Christoph Hiller
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-W-7000 Stuttgart 80, Box 80 11 40, Federal Republic of Germany
Dieter Haase
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-W-7000 Stuttgart 80, Box 80 11 40, Federal Republic of Germany
JÜrgen Weber
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-W-7000 Stuttgart 80, Box 80 11 40, Federal Republic of Germany
Ferdinand Scholz
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-W-7000 Stuttgart 80, Box 80 11 40, Federal Republic of Germany
Get access

Abstract

We investigate the excitation mechanism of the characteristic 4f luminescence 3 H53H6 of Tm3+ in GaAs by photoluminescence excitation spectroscopy. This luminescence transition is also used to study the incorporation of thulium into the GaAs lattice by angular dependent Zeeman spectroscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Hüfner, S., Optical Spectra of Transparent Rare Earth Compounds (Academic, New York, 1978) p. 4.Google Scholar
2. Pomrenke, G. S., Yeo, Y. K., and Hengehold, R. L., in Long-wavelength semiconductor devices, materials, and processes, edited by Katz, A., Biefeld, R., Gunshor, R., and Malik, R. J., (Mat. Res. Soc. Proc. 216, Pittsburgh, PA, 1991) pp. 415420.Google Scholar
3. Pomrenke, G. S., Silkowski, E., Colon, J. E., Topp, D.J., Yeo, Y. K., Hengehold, R. L., J. App. Phys. 71, 1919 (1992).CrossRefGoogle Scholar
4. Pressel, K., Weber, J., Hiller, C., Ottenwälder, D., Kürner, W., Dörnen, A., Scholz, F., Locke, K., Wiedmann, D., and Cordeddu, F., Appl. Phys. Lett. 61, 560 (1992).CrossRefGoogle Scholar
5. Scholz, F., Weber, J., Ottenwälder, D., Pressel, K., Dörnen, A., Locke, K., Cordeddu, F., and Wiedmann, D., J. Crystal Growth 124, 470 (1992).Google Scholar
6. Scholz, F. et al. , this conference.Google Scholar
7. Koster, G. F., Dimmock, J. O., Wheeler, R. G., Statz, H., Properties of the Thirty-Two Point Groups, M.I.T. Press, Cambridge/MA, 1963).Google Scholar
8. Lea, K. R., Leask, M. J. M., Wolf, W. P., J. Phys. Chem. Solids 23, 1381 (1962).CrossRefGoogle Scholar
9. Thonke, K., Pressel, K., Bohnert, G., Stapor, A., Weber, J., Moser, M., Molassioti, A., Hangleiter, A., and Scholz, F., Semicond. Sci. Technol. 5, 1124 (1990).Google Scholar
10. Liesert, B. J. H., Godlewski, M., Stapor, A., Gregorkiewicz, T., Ammerlaan, C. A. J., Weber, J., Moser, M., and Scholz, F., Appl. Phys. Lett. 58, 2237 (1991).CrossRefGoogle Scholar
11. Thonke, K., Hermann, H. U., and Schneider, J., J. Phys. C: Solid State Phys. 21, 5881 (1988).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Luminescence of TM3+ in Gallium Arsenide Grown by Metal-Organic Vapor Phase Epitaxy
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Luminescence of TM3+ in Gallium Arsenide Grown by Metal-Organic Vapor Phase Epitaxy
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Luminescence of TM3+ in Gallium Arsenide Grown by Metal-Organic Vapor Phase Epitaxy
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *