Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-18T18:02:38.074Z Has data issue: false hasContentIssue false

Low Temperature Hydrothermal Processing (<100°C) of Stoichiometric BaxSr1-xTiO3 Thin Films and Powders

Published online by Cambridge University Press:  10 February 2011

Ryan K. Roeder
Affiliation:
School of Materials Engineering, Purdue University, W. Lafayette, IN 47907-1289
Elliott B. Slamovich
Affiliation:
School of Materials Engineering, Purdue University, W. Lafayette, IN 47907-1289
Get access

Abstract

BaxSr1-xTiO3 (BST) thin films and powders were processed below 100°C by hydrolyzing Ti metal-organic precursors and TiO2 powder in alkaline Ba/Sr containing aqueous solutions. Film and powder stoichiometries were examined by x-ray diffraction (XRD), and powder stoichiometries were measured by wavelength dispersive spectroscopy (WDS). Both XRD and WDS results showed that Sr cations were more readily incorporated in BST than Ba cations. A thermodynamic model is introduced to predict BST stoichiometry for pH and solution composition. The model is demonstrated for carbonates that also form hydrothermally with Ba and Sr in solid solution, showing good agreement with experimentally measured stoichiometries and confirming a higher reactivity of the Sr cation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ishizawa, N., Banno, H., Hayashi, M., Yoo, S. E., and Yoshimura, M., Japan J. Appl. Phys., 29 (11), 24672472 (1990).Google Scholar
2. Bendale, P., Venigalla, S., Ambrose, J. R., Verink, E. D. Jr., Adair, J. H., J. Am. Ceram. Soc., 76 (10), 26192727 (1993).Google Scholar
3. Slamovich, E. B. and Aksay, I. A., J. Am. Ceram. Soc., 79 (1), 239247 (1996).Google Scholar
4. Slamovich, E. B. and Aksay, I. A., MRS Symp. Proc., 346, 6368 (1994).Google Scholar
5. Lin, C. H. and Yan, T. S., MRS Symp. Proc., 346, 231236 (1994).Google Scholar
6. Pilleux, M. E., Grahmann, C. R., Fuenzalida, V. M., and Avila, R. E., Appl. Surface Sci., 65/66, 283288 (1993).Google Scholar
7. Komarneni, S., Li, Q., Stefansson, M., and Roy, R., J. Mater. Res., 8 (12), 31763183 (1993).Google Scholar
8. Kajiyoshi, K., Yoshimura, M., Hamaji, Y., Tomono, K., and Kasanami, T., J. Mater. Res., 11 (1), 169183 (1996).Google Scholar
9. James, W. J. and Straumanis, M. E., in Encyclopedia of Electrochemistry of the Elements, edited by Bard, A. J. (Marcel Dekker, New York, 1974) pp. 305395.Google Scholar
10. Lencka, M. M. and Riman, R. E., Chem. Mater., 5, 6170 (1993).Google Scholar
11. Pourbaix, M., Atlas of Electrochemical Equilibria in Aqueous Solutions, (Permagon Press, Oxford, 1966).Google Scholar
12. Barin, I., Thermochemical Data of Pure Substances, 2nd ed. (VCH, New York, 1994).Google Scholar
13. Chase, M. W. Jr., Davies, C. A., Downey, J. R. Jr, Frurip, D. J., McDonald, R. A., and Syverud, A. N., J. Phys. Chem. Ref. Data, 14 (suppl. no. 1), 1985.Google Scholar
14. Barner, H. E. and Scheuerman, R. V., Handbook of Thermochemical Data for Compounds and Aqueous Species, (John Wiley and Sons, New York, 1978).Google Scholar
15. Roeder, R. K. and Slamovich, E. B., results to be published.Google Scholar
16. Wagman, D. D., Evans, W. H., Parker, V. B., Shumm, R. H., Halow, I., Bailey, S. M., Churney, K. L., and Nuttall, R. L., J. Phys. Chem. Ref. Data, 11 (suppl. no. 2), 1982.Google Scholar
17. Patterson, C. S., Slocum, G. H., Busey, R. H., and Mesmer, R. E., Geochim. Cosmochim. Acta, 46, 16531663 (1982).Google Scholar
18. Patterson, C. S., Busey, R. H., and Mesmer, R. E., J. Solution Chem., 13 (9), 647661 (1984).Google Scholar
19. Carroll, J. J., Slupsky, J. D., and Mather, A. E., J. Phys. Chem. Ref. Data, 20 (6), 12011209 (1991).Google Scholar