Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T07:09:42.589Z Has data issue: false hasContentIssue false

Low Energy Implantation and Transient Enhanced Diffusion: Physical Mechanisms and Technology Implications

Published online by Cambridge University Press:  15 February 2011

N. E. B. Cowern
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
E. J. H. Collart
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
J. Politiek
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
P. H. L. Bancken
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
J. G. M. Van Berkum
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
K. Kyllesbech Larsen
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
P.A Stolk
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
H. G. A. Huizing
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
P. Pichler
Affiliation:
Fraunhofer-Institut für Integrierte Schaltungen, Schottkystrasse 10, D-91058 Erlangen, Germany
A. Burenkov
Affiliation:
Fraunhofer-Institut für Integrierte Schaltungen, Schottkystrasse 10, D-91058 Erlangen, Germany
D. J. Gravesteijn
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
Get access

Abstract

Low energy implantation is currently the most promising option for shallow junction formation in the next generations of silicon CMOS technology. Of the dopants that have to be implanted, boron is the most problematic because of its low stopping power (large penetration depth) and its tendency to undergo transient enhanced diffusion and clustering during thermal activation. This paper reports recent advances in our understanding of low energy B implants in crystalline silicon. In general, satisfactory source-drain junction depths and sheet resistances are achievable down to 0.18 micron CMOS technology without the need for implantation of molecular species such as BF2. With the help of defect engineering it may be possible to reach smaller device dimensions. However, there are some major surprises in the physical mechanisms involved in implant profile formation, transient enhanced diffusion and electrical activation of these implants, which may influence further progress with this technology. Some initial attempts to understand and model these effects will be described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Collart, E.J.H., Weemers, K., Gravesteijn, D.J., and van Berkum, J.G.M., Proc. 4th Int. Workshop on Measurement, Characterization and Modeling of Ultrashallow Doping Profiles in Semiconductors (Research Triangle Park, NC, April 6-9, 1997)Google Scholar
[2] Stippel, H. and Selberherr, S., IEICE Trans. Electronics, E77–C, 118 (1994)Google Scholar
[3] van Berkum, J.G.M., Collart, E.J.H., Weemers, K., Gravesteijn, D.J., Iltgen, K., Ben-ninghoven, A., and Niehuis, E., Proc. 4th Int. Workshop on Measurement, Characterization and Modeling of Ultrashallow Doping Profiles in Semiconductors (Research Triangle Park, NC, April 6-9, 1997)Google Scholar
[4] Kyllesbech Larsen, K., Privitera, V., Coffa, S., Priolo, F., Campisano, S.U., Camera, A., Phys. Rev. Lett. 76, 1493 (1996)Google Scholar
[5] Gilmer, G.H., Diaz de la Rubia, T., Stock, D.M., and Jaraiz, M., Nucl. Instrum. Methods B102, 247 (1995)Google Scholar
[6] Watkins, G.D., Phys. Rev. B12, 5824 ()1975;Google Scholar
Troxell, J.R. and Watkins, G.D., Phys. Rev. 22, 921 (1980)Google Scholar
[7] Cowern, N.E.B., van de Walle, G.F.A., Zalm, P.C., and Oostra, D.J., Phys. Rev. Lett. 69, 116 (1992)Google Scholar
[8] Cowern, N.E.B., van de Walle, G.F.A., Gravesteijn, D.J., and Vriezema, C.J., Phys. Rev. Lett. 67, 212 (1991)Google Scholar
[9] Nishikawa, S., Tanaka, A., and Yamaji, , Appl. Phys. Lett. 60, 1370 (1992)Google Scholar
[10] Cowern, N.E.B., Cacciato, A., Custer, J.S., Saris, F.W., and Vandervorst, W., Appl. Phys. Lett. 68, 1150 (1996).Google Scholar
[11] Davies, G. and Newman, R.C. in Carbon in Mono-crystalline Silicon, in “Materials, Properties and Preparation”, Vol. 3b., Handbook of Semiconductors, edited by Moss, T.S. and Mahajan, S., (Noth-Holland, Amsterdam) Chap. 21, pp. 15571636 (1994)Google Scholar
[12] Collart, E.J.H., Weemers, K., Gravesteijn, D.J., van Berkum, J.G.M., and Cowern, N.E.B., paper in these Proceedings.Google Scholar
[13] Cowern, N.E.B., Appl. Phys. Lett. 64, 2646 (1994).Google Scholar
[14] A similar assumption has been used by Rafferty and coworkers in Appl. Phys. Lett. 68, 2395 (1996), to model the evolution of {113} defects during TED.Google Scholar
[15] Pichler, P., Jüngling, W., Selberherr, S., Guerrero, E., and Pötzl, H. W., IEEE Trans. Computer-Aided Design 4, 384 (1985)Google Scholar
[16] Stolk, P., Gossmann, H.-J., Eaglesham, D.J., Jacobson, D.C., Rafferty, C.S., Gilmer, G.H., Jaraiz, M., Poate, J.M., Luftman, H.S., and Haynes, T.E., J. Appl. Phys. (in press).Google Scholar