Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-08-18T00:01:01.892Z Has data issue: false hasContentIssue false

Long-Range Order Effects in Ferroelectric Pb(Zr1/2Ti1/2)O3

Published online by Cambridge University Press:  15 February 2011

G. Sághi-Szabó
Affiliation:
Carnegie Institution of Washington, 5251 Broad Branch Rd., N.W., Washington, DC 20015
Ronald E. Cohen
Affiliation:
Carnegie Institution of Washington, 5251 Broad Branch Rd., N.W., Washington, DC 20015
Get access

Abstract

The local orbital extension of the Linearized Augmented Planewave (LAPW+LO) method within the local density and general gradient approximations was used to optimize internal coordinates and calculate total energies of Pb(Zri1/2Ti1/2)O3 (PZT) superlattices with B site cations ordered along the [001] and [111] directions. Ferroelectric structures and bond-length distributions similar to those obtained from experimental data were found for all three investigated chemically ordered phases. The Ti atom sits in an off-center position of a slightly distorted TiO6 octahedron, the structure of which is mostly independent of the chemical ordering pattern. Coupling between the Ti and Zr containing octahedra results in highly distorted ZrO6 units. This relatively high energy part of the structure could decrease the stability of these perovskite compounds against zone-boundary rotations of the BO6 octahedra. Polar, zone-center only distortions result in lower energy [111] ordered superstructures when compared to the [001] ordered structure. The lowest energy chemically ordered PZT is the one with B-site cations ordered along the [111] direction and has 14mm symmetry. Our total energy results and a simple statistical model predict a wide miscibility gap PZT at the morphotropic composition is therefore likely a multiphase or metastable material which may be responsible for its sensitivity to synthesis and annealing conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Setter, N. and Cross, L. E., J. Mater. Sci. 15, 2478 (1980).Google Scholar
2 Chen, I-W., Li, P. and Wang, Y., J. Phys. Chem. Solids, 57, 1525 (1996).Google Scholar
3 Randall, C.A., Bhalla, A. S., Shrout, T. R. and Cross, L. E., Ferroelec. Lett., 11, 103 (1990).Google Scholar
4 Jaffe, B., Cook, W. R., and Jaffe, H., Piezoelectric Ceramics, (Academic Press, London, 1971);Google Scholar
Lines, M. E. and Glass, A. M., Principles and Applications of Ferroelectrics and Related Materials, (Clarendon Press, Oxford, 1977).Google Scholar
5 Teslic, S., Egami, T. and Viehland, D., J. Phys. Chem. Solids, 57, 1537 (1996).Google Scholar
6 Glazer, A. M., Roleder, K. and Dec, J., Acta Cryst. B 49, 846 (1993).Google Scholar
7 Whatmore, R. W. and Glazer, A. M., J. Phys. C 12, 1505 (1979).Google Scholar
8 Randall, C. A., Matsko, M. G., Cao, W. and Bhalla, A. S., Solid State Commun. 24, 769 (1977).Google Scholar
9 Viehland, D., Li, J.-F., Dai, X. and Xu, Z., J. Phys. Chem. Solids 57, 1545 (1996).Google Scholar
10 Cao, W. and Cross, L. E., Phys. Rev. B 47, 4825 (1993).Google Scholar
11 Ari-Gur, P. and Benguigui, L., Solid State Commun. 15, 1077 (1974).Google Scholar
12 Kakegawa, K., Mohri, J., Shirasaki, S. and Takahashi, K., J. Am. Ceram. Soc. 65, 515 (1982).Google Scholar
13 Cohen, R. E. and Krakauer, H., Phys. Rev. B 42, 6416 (1990).Google Scholar
14 Cohen, R. E. and Krakauer, H., Ferroelec. 136, 65 (1992).Google Scholar
15 Rabe, K. M. and Waghmare, U. V., Ferroelec. 164, 15 (1995).Google Scholar
16 King-Smith, R. D. and Vanderbilt, D., Phys. Rev. B 49, 5828 (1994).Google Scholar
17 Singh, D. J. and Boyer, L. L., Ferroelectrics 136, 95 (1992).Google Scholar
18 Singh, D. J., Ferroelectrics 164, 143 (1995).Google Scholar
19 Singh, D. J., Phys. Rev. B 52, 12559 (1995).Google Scholar
20 Singh, D. J., Phys. Rev. B 53, 176 (1996).Google Scholar
21 Wang, C.-Z., Yu, R. and Krakauer, H., Phys. Rev. Letters 72, 368 (1994).Google Scholar
22 Yu, R. and Krakauer, H., Phys. Rev. B 49, 4467 (1994).Google Scholar
23 Perdew, J. P. and Wang, Y., Phys. Rev. B 45, 13244 (1992).Google Scholar
24 Singh, D. J., Ferroelectrics 164, 143 (1995).Google Scholar
25 Singh, D. J., Planewaves, Pseudopotenlials and the LAPW Method, (Kluwer Academic Publishers, Boston, 1994), p. 56.Google Scholar
26 Hedin, L. and Lundquist, B. I., J. Phys. C 4, 2064 (1971).Google Scholar
27 Baldereschi, A., Phys. Rev. B 7, 5212 (1973).Google Scholar
28 Chadi, D. J. and Cohen, M. L., Phys. Rev. B 8, 5747, (1973).Google Scholar
29 Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).Google Scholar
30 Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 16, 1748 (1977).Google Scholar
31 Yu, R., Singh, D. and Krakauer, H., Phys. Rev B 43, 6411 (1991).Google Scholar
32 Pulay, P., Mol. Phys. 17, 197 (1969).Google Scholar
33 Shannon, R. D. and Prewitt, C.T., Acta Cryst., 925 (1969);Google Scholar
Shannon, R. D., Acta Cryst. A 32, 751 (1976).Google Scholar
34 Fujishita, H. and Hoshino, S., J. Phys. Soc. Jpn. 53, 226 (1984).Google Scholar
35 Teslic, S., Egami, T. and Viehland, D., J. Phys. Chem. Solids, 57, 1537 (1996).Google Scholar
36 Jona, F., Shirane, G., Mazzi, F. and Pepinski, R., Phys. Rev. 105, 849 (1957).Google Scholar
37 Lucuta, P. G., Constantinescu, F. and Barb, D., J. Am. Ceram. Soc. 68, 533 (1985).Google Scholar
38 Masuda, A., Yamanaka, Y., Tazoe, M., Yonezawa, Y., Morimoto, A. and Shimizu, T., Jpn. J. Appl. Phys. 34, 5154 (1995).Google Scholar
39 Akoi, K., Fukuda, Y., Numata, K. and Nishimura, A., J. Appl. Phys. 34, 746 (1995)Google Scholar
40 Sotome, Y., Senzaki, J., Morita, S., Tanimoto, S., Hirai, T., Ueno, T., Kuroiwa, K. and Tanimoto, S., Jpn. J. Appl. Phys. 33, 4066 (1994).Google Scholar
41 Hirai, T., Teramoto, K., Goto, T. and Tarui, Y., Jpn. J. Appl. Phys. 34, 539 (1995).Google Scholar