Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-29T17:12:26.819Z Has data issue: false hasContentIssue false

Lesser-known piezoelectric and pyroelectric applications of electroactive polymers

Published online by Cambridge University Press:  01 February 2011

Sidney B. Lang
Affiliation:
lang@bgu.ac.il, Ben-Gurion University of the Negev, Chemical Engineering, POB 653, Beer Sheva, N/A, 84105, Israel, 972-8-6461490
Supasarote Muensit
Affiliation:
supasarute.m@psu.ac.th, Prince of Songkla University, Physics, Thailand
Get access

Abstract

The piezoelectric effect was first observed in polyvinylidene fluoride polymer (PVDF) in 1969 and the pyroelectric effect was found several years later. A number of additional ferroelectric polymers have been discovered since that time including the copolymer PVDF with trifluoroethylene (P(VDF-TrFE)), and the odd-numbered nylons. A large number of applications of piezoelectricity and pyroelectricity have been developed. The magnitudes of the effects in polymers are much lower than those of ferroelectric ceramics (an exception is the piezoelectric effect in porous polymers). However, other factors make these very desirable materials for applications. The polymers have low permittivities, low acoustic impedances and low thermal conductivities. They are available in large area sheets and they are flexible and relatively low in cost. Major applications include microphones and loudspeakers, ultrasonic devices, SAW transducers, actuators, infrared detectors and many others. This review will describe some of the lesser-known applications of these materials in the fields of tactile devices, energy conversion, porous polymers, property measurement, pyroelectric infrared sensors, shock sensors and space science.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lang, S. B., Sourcebook of Pyroelectricity, (Gordon & Breach Science Pub., London, 1974).Google Scholar
2. Lang, S. B., Physics Today 58, 31 (2005).Google Scholar
3. Curie, J. and Curie, P., Comptes Rendus de l'Academie des Sciences 91, 294 (1880).Google Scholar
4. Kawai, H., Japan. J. Appl. Phys. 8, 975 (1969).Google Scholar
5. Bergman, J. G., McFee, J. H. and Crane, G. R., Appl. Phys. Lett. 18, 203 (1971).Google Scholar
6. Nakamura, K. and Wada, Y., J. Polym. Sci. A–29, 161 (1971).Google Scholar
7. Razian, M. A. and Pepper, M. G., IEEE Trans. Neural Syst. Rehabil. Engin. 11, 288 (2003).Google Scholar
8. Jiang, Z., Funai, K., Tanaka, M. and Chonan, S., J. of Intell. Mater. Sys. Struct. 10, 481 (1999).Google Scholar
9. Tanaka, M., Journal of Materials Processing Technology 108, 253 (2001).Google Scholar
10. Tanaka, M., Luc, L. J., Hachiro, T., Katsuko, K. and Chonan, S., Skin Res. Tech. 9, 131 (2003).Google Scholar
11. Dargahi, J., Journal of Mechanical Design 124, 576 (2002).Google Scholar
12. Dargahi, J., Parameswaran, M. and Payandeh, S., J. Microelectromech. Sys. 9, 329 (2000).Google Scholar
13. Taylor, G. W., Burns, J. R., Kammann, S. M., Powers, W. B. and Welsh, T. R., IEEE J. Oceanic Engin. 26, 539 (2001).Google Scholar
14. Ikura, M., Ferroelectrics 267, 403 (2002).Google Scholar
15. Yu, J. L. and Ikura, M., Power, J. Energy Syst. (In press).Google Scholar
16. Olsen, R. B., Bruno, D. A. and Brisco, M., J. Appl. Phys. 58, 4709 (1985).Google Scholar
17. Wegener, M. and Bauer, S., ChemPhysChem 6, 1014 (2005).Google Scholar
18. Neugschwandter, G. S., Schwodiauer, R., Bauer-Gogonea, S. and Bauer, S., J. Appl. Phys. 89, 4503 (2001).Google Scholar
19. Bauer, S., Gerhard-Multhaupt, R. and Sessler, G. M., Physics Today 57, 34 (2004).Google Scholar
20. Heikkinen, L. M., Panula, H. E., Lyyra, T., Olkkonen, H., Kiviranta, I., Nevalainen, T. and Helminen, H. J., Scand. J. Lab. Anim. Sci. 24, 85 (1997).Google Scholar
21. Bauer, F., IEEE Trans. Ultrasonics, Ferroelectrics, and Freq, Control 47, 1448 (2000).Google Scholar
22. Mandelis, A., Chem. Phys. Lett. 108, 388 (1984).Google Scholar
23. Wang, C., Mandelis, A. and Garcia, F. J., Sens. Actuators B 60, 228 (1999).Google Scholar
24. Lang, S. B., Key Eng. Mater. 92–93, 83 (1994).Google Scholar
25. Binnie, T. D., Weller, H. J., He, Z. and Setiadi, D., IEEE Trans. Ultrasonics, Ferroelectrics, and Freq, Control 47, 1413 (2000).Google Scholar
26. Tuzzolino, A. J., Economou, T. E., McKibben, R. B., et al. , J. Geophys. Res. 108, 5 (2003).Google Scholar
27. Tuzzolino, A. J., Economou, T. E., Clark, B. C., et al. , Science 304, 1776 (2004)Google Scholar