Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-07-27T11:43:49.004Z Has data issue: false hasContentIssue false

Laser Photochemical Growth of Amorphous Silicon at Low Temperatures and Comparison with Thermal Chemical Vapor Deposition

Published online by Cambridge University Press:  26 February 2011

D. Eres
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Building 2000, P.O. Box X, Oak Ridge, Tennessee 37831–6056
D. H. Lowndes
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Building 2000, P.O. Box X, Oak Ridge, Tennessee 37831–6056
D. B. Geohegan
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Building 2000, P.O. Box X, Oak Ridge, Tennessee 37831–6056
D. N. Mashburn
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Building 2000, P.O. Box X, Oak Ridge, Tennessee 37831–6056
Get access

Abstract

Pulsed ArF (193 nm) excimer laser radiation has been used to dissociate disilane (Si2H6), resulting in photochemically controlled deposition of amorphous Si thin films. A high stability HeNe (6328 Å) laser was used for precise in situ monitoring of film deposition rates, under varying deposition conditions. A helium window purge nearly eliminated Si film deposition on the chamber windows. With the excimer laser beam parallel to the substrate, deposition of amorphous Si can be controlled entirely by the photon fluence (negligible background thermal growth) at temperatures from room temperature up to ~400°C. Reasonable photolytic deposition rates (>1 A/sec) are combined with "digital" control of film thickness (>0.02 A/laser pulse). Activation energies of 1.50 (±0.1) eV and 0.09 (±0.02) eV were found for pyrolytic and photolytic deposition, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Yoshikawa, A. and Yamaga, S., Jap. J. of Appl. Phys. 23, L91 (1984).Google Scholar
2 Photon, Beam and Plasma Stimulated Chemical Processes at Surfaces, ed. by V. M. Donnelly, I. P. Herman, and M. Hi rose (Mater. Res. Soc. Symp. Proc. 75, Pittsburgh, PA, 1987).Google Scholar
3 Laser-Controlled Chemical Processing of Surfaces, ed. by A. W. Johnson, D. J. Ehrlich, and H. W. Schlossberg (Mater. Res. Soc. Symp. Proc. 29, Elsevier, New York, 1984).Google Scholar
4 Laser Diagnostics and Photochemical Processing for Semiconductor Devices, ed. by R. M. Osgood, S.R.J. Brueck, and H. R. Schlossberg (Mater. Res. Soc. Symp. Proc. 17, Elsevier, New York, 1983).Google Scholar
5 See D. H. Lowndes, D. B. Geohegan, D. Eres, D. N. Mashburn and S. J. Pennycook, “Photon-Controlled Growth of Mul ti layered Structures,” Symposium D of this meeting.Google Scholar
6 Eden, J. G., Greene, J. E., Osmundsen, J. F., Lubben, D., Abele, C. C., Gorbatkin, S., and Desai, H. D., Mater. Res. Soc. Symp. Proc. 17, 185 (1983).Google Scholar
7 Itoh, U., Toyoshima, Y., Onuki, H., Washida, N. and Ibuki, T., J. Chem. Phys. 85, 4867 (1986).Google Scholar
8 Herzberg, G., Molecular Spectra and Molecular Structure, III, Electronic Spectra and Electronic Structure of Polyatomic Molecules (Van Nostrand, New York, 1966).Google Scholar
9 Hampson, R. F. Jr., and McNesby, J. R., J. Chem. Phys. 42, 2200 (1965).Google Scholar
10 Olbrich, G., Potzinger, P., Reimann, B., and Walsh, R., Oganometallics 3, 1267 (1984).Google Scholar
11 Michael, Pauline Ho, Coltrin, E., Binkley, J. S., and Melius, C. F., J. Phys. Chem. 90, 3399 (1986).Google Scholar
12 Bowrey, M. and Purnell, J. H., Proc. R. Soc. London, A. 321, 341 (1971).Google Scholar
13 Gordon, Mark S., Truong, Thanh N., and Bonderson, Elizabeth K., J. Am. Chem. Soc. 108, 1421 (1986).Google Scholar
14 Chu, T. L., Chu, Shirley S., Ang, S. T., Lo, D. H., Duong, A., and Hwang, C. G., J. Appl. Phys. 59, 1319 (1986).Google Scholar
15 White, R. T., Espino-Rios, R. L., Rogers, D. S., Ring, M. A., and O'Neil, H. E., Int. J. Chem. Kinet. 17, 1029 (1985).Google Scholar