Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-fg2fv Total loading time: 0.173 Render date: 2021-10-22T14:35:09.585Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Laser Light Scattering Observations of Liquid–Liquid Phase Separation in a Polymer-Induced Liquid-Precursor (PILP) Mineralization Process

Published online by Cambridge University Press:  01 February 2011

Elaine DiMasi*
Affiliation:
Brookhaven National Laboratory, Upton NY 11973
Tianbo Liu
Affiliation:
Brookhaven National Laboratory, Upton NY 11973
Matthew J. Olszta
Affiliation:
University of Florida, Gainesville FL 32611
Laurie B. Gower*
Affiliation:
University of Florida, Gainesville FL 32611
*
*Email address for correspondence: dimasi@bnl.gov
Email address for correspondence: lgowe@mse.ufl.edu
Get access

Abstract

A Polymer-Induced Liquid-Precursor (PILP) process for mineralization of calcium carbonate has been studied in-situ by laser light scattering. Static and dynamic light scattering data were obtained from CaCl2 solutions containing poly(aspartic acid). Under these conditions calcium carbonate mineralizes through a liquid droplet precursor phase when the solution is exposed to the decomposition products of ammonium carbonate. Our measurements probe the integrated scatterer mass and the apparent hydrodynamic radius Rh,app of the droplets as they nucleate and coalesce. The data reveal three stages in the formation of the PILP phase: an early stage of droplet growth to Rh,app ≈ 250 nm; a mid-time stage of fluctuations and polydispersity in particle size; and a final growth period where Rh,app increases from 350 nm to the micron scale. Aggregation of precursor droplets, rather than atom-by-atom growth, is the dominant mechanism of mineral formation under these conditions. With respect to biomineralization, this first observation of 100-nm-scale droplets is significant, implying a possibility to mineralize from the liquid phase within the nanoscale compartments in which many biominerals form.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Penn State University, State College PA 16802

2

Present Address: Lehigh University, Bethlehem PA 18015

References

1 Dan, N., TIBTECH 18 (2000).CrossRefGoogle Scholar
2 Buijnsters, P. J. J. A. et al, Langmuir 17, 3623 (2001).CrossRefGoogle Scholar
3 Han, Y.-J. and Aizenberg, J., Angew. Chemie 42, 3668 (2003).CrossRefGoogle Scholar
4 Lochhead, M. J., Letellier, S. R., and Vogel, V., J. Phys. Chem. B 101, 10821 (1997).CrossRefGoogle Scholar
5 Pach, L., Hrabe, Z., Komarneni, S., and Roy, R., J. Mater. Res. 5, 2928 (1990).CrossRefGoogle Scholar
6 Agarwal, P. and Bergland, K. A., Cryst. Growth Des. 3, 941 (2003).CrossRefGoogle Scholar
7 Kim, I. W., Robertson, R. E., and Zand, R., Cryst. Growth Des. 5, 513 (2005).CrossRefGoogle Scholar
8 Lakshminarayanan, R., Kini, R. M., and Valiyaveettil, S., PNAS 99 (2002).CrossRefGoogle Scholar
9 Beniash, E. et al, Proc. R. Soc. Lond. B, 461 (1997).Google Scholar
10 Wilt, F., J. Struct. Biol. 126, 216 (1999).CrossRefGoogle Scholar
11 Brooks, R. et al, Proc. Royal Soc. London 243A, 145 (1950).Google Scholar
12 DiMasi, E., Patel, V. M., Sivakumar, M., Olszta, M. J., Yang, Y. P., and Gower, L. B., Langmuir 18, 8902 (2002).CrossRefGoogle Scholar
13 Bolze, J., Peng, B., Dingenouts, N., Panine, P., Narayanan, T., and Ballauff, M., Langmuir 18, 8364 (2002).CrossRefGoogle Scholar
14 Pontoni, D. et al, J. Phys. Chem. B 107, 5123 (2003).CrossRefGoogle Scholar
15 Gower, L. B. and Odom, D. J., J. Crystal Growth 210, 719 (2000).CrossRefGoogle Scholar
16 Olszta, M. J., Douglas, E. P., and Gower, L. B., in Materials Inspired by Biology, MRS Proceedings Volume 774, page 127, Warrendale PA (2003).Google Scholar
17 Kim, Y. and Gower, L. B., in Materials Inspired by Biology, MRS Proceedings Volume 774, page 141, Warrendale PA (2003).Google Scholar
18 Liu, T., Rulkens, R., Wegner, G., and Chu, B., Macromolecules 31, 6119 (1998).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Laser Light Scattering Observations of Liquid–Liquid Phase Separation in a Polymer-Induced Liquid-Precursor (PILP) Mineralization Process
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Laser Light Scattering Observations of Liquid–Liquid Phase Separation in a Polymer-Induced Liquid-Precursor (PILP) Mineralization Process
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Laser Light Scattering Observations of Liquid–Liquid Phase Separation in a Polymer-Induced Liquid-Precursor (PILP) Mineralization Process
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *