Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-21T18:44:32.388Z Has data issue: false hasContentIssue false

Large Cryogenic Storage of Hydrogen in Carbon Nanotubes at Low Pressures

Published online by Cambridge University Press:  15 March 2011

B. K. Pradhan
Affiliation:
Department of Physics, The Pennsylvania State University, University Park, PA16802, USA
A. Harutyunyan
Affiliation:
Department of Physics, The Pennsylvania State University, University Park, PA16802, USA
D. Stojkovic
Affiliation:
Department of Physics, The Pennsylvania State University, University Park, PA16802, USA
P. Zhang
Affiliation:
Department of Physics, The Pennsylvania State University, University Park, PA16802, USA
M. W. Cole
Affiliation:
Department of Physics, The Pennsylvania State University, University Park, PA16802, USA
V. Crespi
Affiliation:
Department of Physics, The Pennsylvania State University, University Park, PA16802, USA
H. Goto
Affiliation:
Honda R&D Co., Ltd. Wako Research Center, Saitama 351-0193, Japan
J. Fujiwara
Affiliation:
Honda R&D Co., Ltd. Wako Research Center, Saitama 351-0193, Japan
P. C. Eklund
Affiliation:
Department of Physics, The Pennsylvania State University, University Park, PA16802, USA
Get access

Abstract

We report (6 wt %) storage of H2 at T=77 K in processed bundles of single-walled carbon nanotubes at P=2 atmospheres. The hydrogen storage isotherms are completely reversible. D2 isotherms confirm this anomalous low-pressure adsorption and further reveal the effects of quantum mechanical zero point motion. We propose that our post-synthesis treatment of the sample not only improves access for hydrogen to the central pores within individual nanotubes, but also may create a roughened tube surface with an enhanced binding energy for hydrogen. Such an enhancement is needed to understand the strong adsorption at low pressure. We obtain an experimental isosteric heat qst=125 ± 5 meV for processed SWNT materials.

Type
Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Berry, G.D., Aceves, S. M., Energy &Fuels, 12, 49, 1998.Google Scholar
2. Hynek, S., Fuller, W. and Bentley, J., Int. J. Hydrogen Energy, 22, 601, 1997.Google Scholar
3. Agarwal, R. K., Noh, J. S., Schwarz, J. A. and davini, P., Carbon, 25, 219, 1987.Google Scholar
4. Dillon, A. C., Jones, K. M., Bekkedahl, T.A., Kiang, C. H., Bethune, D. S., and Heben, M. J., Nature 386, 377379 (1997).Google Scholar
5. Liu, C., Fan, Y. Y., Liu, M., Cong, H. T., Cheng, H. M., and Dresselhaus, M. S., Science, 286, 11271129 (1999).Google Scholar
6. Chen, P., Wu, X., Lin, J., and Tan, K. L., Science, 285, 91– (1999).Google Scholar
7. Chambers, A., Park, C., Baker, R. T. K., and Rodriguez, N. M., J. Phys. Chem., B 102, 42534256 (1998).Google Scholar
8. Ye, Y., Ahn, C. C., Witham, C., Fultz, B., Liu, J., Rinzler, A. G., Colbert, D., Smith, K. A., and Smalley, R. E., Appl. Phys. Lett. 74, 2307– (1999).Google Scholar
9. Dresselhaus, M.S., Williams, K. A., and Eklund, P. C., MRS Bull, 45, 1999 Google Scholar
10. Pradhan, B.K., Harutyunyan, A.R., Eklund, P.C., PSU Invention Disclosure No.2001-2445, 2001 Google Scholar
11.CarboLex Inc; web site: www.carbolex.com.Google Scholar
12. Dresselhaus, M.S. and Eklund, P. C., Adv. In Phys. 49, 705 (2000).Google Scholar
13. Dresselhaus, M.S., Dresselhaus, G., Eklund, P. C., Science of Fullerenes and Carbon Nanotubes, (Academic Press, San Diego, 1996).Google Scholar
14. Mawhinney, D. B. et al Chem. Phys. Lett., 324, 213, 2000.Google Scholar
15. Gregg, S. J. and Sing, K. S. W., Adsorption, Surfacce Area and Porosity, (Academic Press, 1982).Google Scholar