Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T19:02:42.260Z Has data issue: false hasContentIssue false

Kinetics of the Nucleation of a Crystalline Droplet from the Melt

Published online by Cambridge University Press:  26 February 2011

Martin Grant
Affiliation:
Physics Department, Temple University Philadelphia, Pennsylvania 19122
J. D. Gunton
Affiliation:
Physics Department, Temple University Philadelphia, Pennsylvania 19122
Get access

Abstract

Theory for the rate of nucleation of a crystalline solid from its melt is discussed. An expression for the dynamical prefactor of the nucleation rate is presented, which is derived using Langer's field theory of nucleation. The theoretical result generalizes the classical theory of Turnbull and Fisher, and can be tested experimentally. The analysis makes use of the formalism of Ramakrishnan and Yussouff, as extended to solid-melt interfaces by Oxtoby, Haymet, and Harrowell.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Becker, R. and Döring, W. (1935). Ann. Phys. 24, 719.Google Scholar
2 Cahn, J. W. (1980). Acta Metall. 28, 1333.Google Scholar
3 Cahn, J. W. and Hilliard, J. E. (1958). J. Chem. Phys. 28, 258.Google Scholar
4 Cahn, J. W. and Hilliard, J. E. (1959). J. Chem. Phys. 31, 688.Google Scholar
5 Gibbs, J. W. (1961). “Scientific Papers” Vol.1, pp. 314331, Dover, New York. Google Scholar
6 Goldburg, W. I. (1981). In “Scattering Techniques Applied to Supramolecular and Nonequilibrium Systems” (Chen, S. H., Chu, B., and Nossal, R., eds.) Plenum Press, New York. Google Scholar
7 Grant, M. and Desai, R. C. (1982). Phys. Rev. A 25, 2727.Google Scholar
8 Grant, M and Gunton, J. D. (1985). Phys. Rev. B, 32, 7299.Google Scholar
9 Gunton, J. D., San Miguel, M., and Sahni, P. S. (1983). In “Phase Transitions and Critical Phenomena”, (Domb, C. and Lebowitz, J. L., eds.), Vol.8, Academic Press, London. Google Scholar
10 Harrowell, P. and Oxtoby, D. W. (1984). J. Chem. Phys. 80, 1639.Google Scholar
11 Haymet, A. D. J. and Oxtoby, D. W. (1981). J. Chem. Phys. 74, 2559.Google Scholar
12 Hsu, C. S. and Rahman, A. (1979). J. Chem. Phys. 71, 4974.Google Scholar
13 Kawasaki, K. (1975). J. Stat. Phys. 12, 365.Google Scholar
14 Kirkwood, J. G. and Munroe, E. (1941). J. Chem. Phys. 9, 514.Google Scholar
15 Landauer, R. and Swanson, J. A. (1961). Phys. Rev. 121, 1668.Google Scholar
16 Langer, J. S. (1967). Ann. Phys. (N.Y.) 41, 108.CrossRefGoogle Scholar
17 Langer, J. S. (1969). Ann. Phys. (N.Y) 54, 258.Google Scholar
18 Langer, J. S. and Turski, L. A. (1973). Phys. Rev. A 8, 3230.Google Scholar
19 Mountain, R. D. and Brown, A. C. (1984). J. Chem. Phys. 80, 2730.CrossRefGoogle Scholar
20 Oxtoby, D. W. and Haymet, A. D. J. (1982). J. Chem. Phys. 76, 6262.CrossRefGoogle Scholar
21 Ramakrishnan, T. V. and Yussouff, M. (1979). Phys. Rev. B 19, 2775.Google Scholar
22 Rottman, C. and Wortis, M. (1984). Phys. Rep. 103, 59.Google Scholar
23 Spaepen, F. (1975). Acta Metall. 23, 729.Google Scholar
24 Spaepen, F. and Turnbull, D. (1984). Ann. Rev. Phys. Chem. 35, 241.Google Scholar
25 Turnbull, D. and Fisher, J. C. (1949). J. Chem. Phys. 17, 71.Google Scholar
26 Turski, L. A. and Langer, J. S. (1980). Phys. Rev. A 22, 2189.Google Scholar
27 Wolf, D. E. and Griffiths, R. B. (1985). Carnegie-Mellon University preprint.Google Scholar
28 Zia, R. K. P. and Wallace, D. J. (1985). Phys. Rev. B 31, 1624.Google Scholar