Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-18T00:19:18.379Z Has data issue: false hasContentIssue false

Kinetic Analysis of Nonisothermal Crystallization

Published online by Cambridge University Press:  21 February 2011

K. F. Kelton*
Affiliation:
Department of Physics, Washington University, St. Louis, MO 63130, kfk@wuphys.wustl.edu
Get access

Abstract

A realistic computer model for polymorphic crystallization under isothermal and nonisothermal conditions, which takes proper account of time-dependent nucleation behavior and cluster-size-dependent growth, is presented. A new correction to the standard Johnson-Mehl-Avrami-Kolmogorov (JMAK) statistical analysis that takes account of finite sample size is incorporated to simulate data taken from fine particles and nano-structured materials. Model predictions compare well with experimental data obtained from calorimetric studies of the polymorphic crystallization of lithium disilicate glass. The computer model is employed to evaluate commonly used methods of analysis for calorimetric data and to suggest new approaches for extracting kinetic parameters.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Yinnon, H. and Uhlmann, D.R., J. Non-Cryst. Solids, 54, 253 (1983)Google Scholar
2 Kelton, K. F., Greer, A.L., and Thompson, C.V., J. Chem. Phys., 79, 6261 (1983).Google Scholar
3 Kelton, K. F. and Greer, A.L., J. Non-Cryst. Solids, 180, 17 (1986).Google Scholar
4 Kelton, K. F., J. Non-Cryst. Solids, 163, 283 (1993).Google Scholar
5 Levine, L. E., Narayan, K.L., and Kelton, K.F., J. Mat. Res. (submitted), 1995.Google Scholar
6 Kelton, K. F., in Solid State Physics, edited by Ehrenreich, H. and Turnbull, D., Academic Press: New York, 1991, p. 75177.Google Scholar
7 Koster, U. and Blank-Bewersdorff, M., MRS. Symp. Proc, 57, 115 (1987).Google Scholar
8 Narayan, K. L. and Kelton, K.F., J. Non-Cryst. Solids, (in press).Google Scholar
9 Kelton, K. F. and Weinberg, M.C., J. Non-Cryst. Solids, 180, 17 (1994).Google Scholar
10 Christian, J. W., The Theory of Transformations in Metals and Alloys, Pergamon Press, Oxford, 1975.Google Scholar
11 Huang, W. S., Ray, C. S., Narayan, K. L., Cull, T. C. and Kelton, K. F., J. Non-Cryst. Solids, (submitted).Google Scholar
12 Matusita, K. and Tashiro, M., Jpn. J. Ceram. Assoc, 81, 500 (1973).Google Scholar
13 Barker, M. F., Wang, T.H., and James, P.F., Phys. Chem. Glasses, 29, 240 (1988).Google Scholar
14 Deubener, J., Bruckner, R., and Steraitzke, M., J. Non-Cryst. Solids, 163, 1 (1993).Google Scholar
15 Uhlmann, D. R., J. Non-Cryst. Solids, 7, 337 (1982).Google Scholar
16 Fokin, V. M., Filipovich, V.N., and Kalinina, A.M., Fiz. Kihim. Stekla, 2(4), 129 (1976).Google Scholar
17 Kalinina, A. M., Filipovich, V. N., and Fokin, V.M., J. Non-Cryst. Solids, 38&39, 723 (1980).Google Scholar
18 Greer, A. L. and Kelton, K.F., J. Am. Ceram. Soc, 74, 1015 (1991).Google Scholar
19 Shneidman, V. A., J. Chem. Phys., 44, 2609 (1991).Google Scholar
20 Kelton, K. F., Narayan, K. L., Levine, L. E., Cull, T. C. and Ray, C. S., J. Non-Cryst. Solids, (submitted).Google Scholar
21 Kissinger, H. E., J. Res. Nat. Bur. Stand., 57, 217 (1956).Google Scholar
22 Henderson, D. W., J. Non-Cryst. Solids, 30, 301 (1979).Google Scholar
23 Ozawa, T., Polymer, 12, 150 (1971).Google Scholar
24 Ray, C. S. and Day, D.E., J. Am. Ceram. Soc, 73, 439 (1990).Google Scholar
25 Kelton, K. F., J. Am. Ceram. Soc, 75(9), 2449 (1992).Google Scholar
26 Ray, C. S. (private communication).Google Scholar