Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-19T05:37:39.480Z Has data issue: false hasContentIssue false

Irradiation Spectrum and Ionization-Induced Diffusion Effects in Ceramics

Published online by Cambridge University Press:  15 February 2011

S. J. Zinkle*
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6376 USA, zinklesj@ornl.gov
Get access

Abstract

There are two main components to the irradiation spectrum which need to be considered inradiation effects studies on nonmetals, namely the primary knock-on atom energy spectrum and ionizing radiation. The published low-temperature studies on A12O3 and MgO suggest that the defect production is nearly independent of the average primary knock-on atom energy, in sharp contrast to the situation for metals. On the other hand, ionizing radiation has been shown to exert a pronounced influence on the microstructural evolution of both semiconductors and insulators under certain conditions. Recent work on the microstructure of ion-irradiated ceramics is summarized, which provides evidence for significant ionization-induced diffusion. Polycrystalline samples of MgO, A12O3, and MgAl2O4 were irradiated with various ions ranging from 1 MeV H+ to 4 MeV Zr+ ions at temperatures between 25 and 650°C. Cross-section transmission electron microscopy was used to investigate the depth-dependent microstructure of the irradiated specimens. Dislocation loop nucleation was effectively suppressed in specimens irradiated with light ions, whereas the growth rate of dislocation loops was enhanced. The sensitivity to irradiation spectrum is attributed to ionization-induced diffusion. The interstitial migration energies in MgAl2O4 and A12O3 are estimated to be ≤0.4 eV and ≤0.8 eV, respectively for irradiation conditions where ionization-induced diffusion effects are expected to be negligible.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hobbs, L.W., J. Amer. Ceram. Soc. 62 (5-6), 267 (1979).Google Scholar
2. Clinard, F.W. Jr. and Hobbs, L.W., in Physics of Radiation Effects in Crystals, edited by Johnson, R.A. and Orlov, A.N. (Elsevier Science Publishers, Amsterdam, 1986), p. 387.Google Scholar
3. Hobbs, L.W., Clinard, F.W. Jr., Zinkle, S.J., and Ewing, R.C., J. Nucl. Mater. 216, 291 (1994).Google Scholar
4. Kingery, W.D., J. Nucl. Mater. 24, 21 (1967).Google Scholar
5. Pells, G.P., Report No. AERE-R9359, 1979.Google Scholar
6. Atobe, K. and Nakagawa, M., Cryst. Latt. Def. Amorph. Mater. 17, 229 (1987).Google Scholar
7. Agnew, P., Nucl. Instr. Meth. B 65, 305 (1992).Google Scholar
8. Averback, R.S., Ehrhart, P., Popov, A.I., and Sambeek, A.v., Rad. Effects Def. Solids 136, 169 (1995).Google Scholar
9. Averback, R.S., Benedek, R., Merkle, K.L., Sprinkle, J., and Thompson, L.J., J. Nucl. Mater. 113, 211 (1983).Google Scholar
10. Zinkle, S.J. and Kinoshita, C., J. Nucl. Mater., Proc. Int. Workshop on Defect Production, Accumulation and Materials Performance in Irradiation Environment, in press (1997).Google Scholar
11. Hughes, A.E., J. Physique 34, Colloque C9 (11-12), 515 (1973).Google Scholar
12. Scholz, C. and Ehrhart, P., in Beam Solid Interactions: Fundamentals and Applications, MRS Symposium Proceedings, edited by Nastasi, M., Harriott, L.R., Herbots, N., and Averback, R.S. (Materials Research Society, Pittsburgh, 1993), Vol.279, p. 427.Google Scholar
13. Sonoda, T., Kinoshita, C., and Isobe, Y., Annales de Physique 20, Colloque C3 (3), 33 (1995).Google Scholar
14. Cox, R.T., Phys. Lett. 21, 503 (1966).Google Scholar
15. Gulden, T.D., Philos. Mag. 15, 453 (1967).Google Scholar
16. Bourgoin, J.C. and Corbett, J.W., Rad. Effects 36, 157 (1978).Google Scholar
17. Bourgoin, J.C., Rad. Effects Def. Solids 111&112 (1-2), 29 (1989).Google Scholar
18. Kimerling, L.C., Solid-State Electronics 21, 1391 (1978).Google Scholar
19. Sizmann, R., J. Nucl. Mater. 69& 70, 386 (1978).Google Scholar
20. Bourgoin, J.C. and Corbett, J.W., J. Chem. Phys. 59 (8), 4042 (1973).Google Scholar
21. Gösele, U., Frank, W., and Seeger, A., in Defects and Radiation Effects in Semiconductors, 1978, IOP Conf. Series No. 46, edited by Albany, J.H. (Institute of Physics, London, 1979), p. 538.Google Scholar
22. Walker, D.G., J. Nucl. Mater. 14, 195 (1964).Google Scholar
23. Krefft, G.B., J. Vac. Sci. Technol. 14, 533 (1977).Google Scholar
24. Arnold, G.W., Krefft, G.B., and Norris, C.B., Appl. Phys. Lett. 25 (10), 540 (1974).Google Scholar
25. Krefft, G.B. and EerNisse, E.P., J. Appl. Phys. 49 (5), 2725 (1978).Google Scholar
26. Brenier, R., Canut, B., Gea, L. et al., Nucl. Instr. Meth. B 80/81, 1210 (1993).Google Scholar
27. Lee, E.H. and Poppa, H., J. Vac. Sci. Technol. 14 (1), 223 (1977).Google Scholar
28. Zinkle, S.J. and Snead, L.L., Nucl. Instr. Meth. B 116, 92 (1996).Google Scholar
29. Wang, L.M., Ewing, R.C., Gong, W.-L., Wang, S.-X., and Meldrum, A., in Microstructure Evolution During Irradiation, MRS Symposium Proceedings, edited by Diaz de la Rubia, T., Hobbs, L.W., Robertson, I.M., and Was, G.S. (Materials Research Society, Pittsburgh, 1997), Vol.439 (in press).Google Scholar
30. Abe, H., Kinoshita, C., and Denda, Y., in Microstructure of Irradiated Materials, MRS Symposium Proceedings, edited by Robertson, I.M., Rehn, L.E., Zinkle, S.J., and Phythian, W.J. (Materials Research Society, Pittsburgh, 1995), Vol.373, p. 487.Google Scholar
31. Jencic, I. and Robertson, I.M., J. Mater. Res. 11 (9), 2152 (1996).Google Scholar
32. Ravi, J., Erokhin, Y., Christensen, K. et al., in Microstructure of Irradiated Materials, MRS Symposium Proceedings, edited by Robertson, I.M., Rehn, L.E., Zinkle, S.J., and Phythian, W.J. (Materials Research Society, Pittsburgh, 1995), Vol.373, p. 475.Google Scholar
33. Chen, Y., Abraham, M.M., and Tohver, H.T., Phys. Rev. Lett. 37, 1757 (1976).Google Scholar
34. Chen, Y., Gonzalez, R., and Tsang, K.L., Phys. Rev. Lett. 53, 1077 (1984).Google Scholar
35. Thompson, D.A. and Macauley-Newcombe, R.G., Canadian Fusion Fuels Technology Project Report No. CFFTP G-9586, 1996.Google Scholar
36. Zinkle, S.J., Nucl. Instr. Meth. B 91, 234 (1994).Google Scholar
37. Zinkle, S.J., J. Nucl. Mater. 219, 113 (1995).Google Scholar
38. Zinkle, S.J., in Microstructure of Irradiated Materials, MRS Symposium Proceedings, edited by Robertson, I.M., Rehn, L.E., Zinkle, S.J., and Phythian, W.J. (Materials Research Society, Pittsburgh, 1995), Vol.373, p. 287.Google Scholar
39. Evans, N.D., Zinkle, S.J., and Bentley, J., in Microstructure of Irradiated Materials, MRS Symposium Proceedings, edited by Robertson, I.M., Rehn, L.E., Zinkle, S.J., and Phythian, W.J. (Materials Research Society, Pittsburgh, 1995), Vol.373, p. 419.Google Scholar
40. Zinkle, S.J., in 15th Int. Symp. on Effects of Radiation on Materials, ASTM STP 1125, edited by Stoller, R.E., Kumar, A.S., and Gelles, D.S. (American Society for Testing and Materials, Philadelphia, 1992), p. 749.Google Scholar
41. Zinkle, S.J., J. Nucl. Mater. 191–194, 645 (1992).Google Scholar
42. Zinkle, S.J., J. Amer. Ceram. Soc. 72 (8), 1343 (1989).Google Scholar
43. Yasuda, K., Morisaki, R., Kinoshita, C., Abe, H., and Naramoto, H., Proc. 7th Int. Symp. On Advanced Nuclear Energy Research (in press); Philos. Mag., to be submitted (1997).Google Scholar
44. Zinkle, S.J. and Kojima, S., J. Nucl. Mater. 179–181, 395 (1991).Google Scholar
45. Allen, W.R. and Zinkle, S.J., J. Nucl. Mater. 191–194, 645 (1992).Google Scholar
46. Pells, G.P., Rad. Phys. Chemisty 22 (6), 1053 (1983).Google Scholar
47. Stoller, R.E. (private communication).Google Scholar
48. Zinkle, S.J. and Pells, G.P., J. Nucl. Mater., Am. Ceram. Soc. Symp. on Fabrication and Properties of Ceramics for Fusion Energy, to be publ. (1997).Google Scholar
49. Clinard, F.W. Jr, Hurley, G.F., and Hobbs, L.W., J. Nucl. Mater. 108& 109, 655 (1982).Google Scholar
50. Kinoshita, C., Fukumoto, K., Fukuda, K., Garner, F.A., and Hollenberg, G.W., J. Nucl. Mater. 219, 143 (1995).Google Scholar
51. Sickafus, K.E., Larson, A.C., Yu, N. et al., J. Nucl. Mater. 219, 143 (1995).Google Scholar
52. Mansur, L.K., J. Nucl. Mater. 206, 306 (1993).Google Scholar
53. Corbett, J.W. and Bourgoin, J.C., IEEE Trans. Nucl. Sci. NS–18 (6), 11 (1971).Google Scholar
54. Brudevoll, T., Kotomin, E.A., and Christensen, N.E., Phys. Rev. B 53 (12), 7731 (1996).Google Scholar
55. Kotomin, E.A., Kuklja, M.M., Eglitis, R.I., and Popov, A.I., Mater. Sci. Eng. B 37, 212 (1996).Google Scholar
56. Stashans, A., Kotomin, E.A., and Calais, J.-L., Phys. Rev. B 49 (21), 14854 (1994).Google Scholar