Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-56sbs Total loading time: 0.181 Render date: 2021-09-21T21:27:06.076Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Investigation of Impurity Neutralization and Defect Passivation in Polycrystalline Silicon Solar Cells

Published online by Cambridge University Press:  22 February 2011

Lawrence L. Kazmerski*
Affiliation:
Solar Energy Research Institute, 1617 Cole Boulevard, Golden, CO 80401
Get access

Abstract

The passivation of grain boundaries and the neutralization of impurities in polycrystalline silicon, important processes for the improvement of performance of devices fabricated from this material, are discussed. The incorporation of hydrogen into grain boundaries is investigated using surface analysis methods. Volume-mapping techniques are used to identify the bonding mechanisms of the hydrogen in oxygen-free and oxygen-rich intergrain regions. Interactions between shallow acceptors (B, Al, Ga and In) and hydrogen in polycrystalline Si are studied. The bonding mechanisms involved in the acceptor neutralization process at the grain boundaries are evaluated using microanalytical techniques. Differences in the incorporation of molecular and atomic hydrogen, and corresponding variation in electrical passivation of grain boundaries, are observed. Volume-indexed AES and Auger difference spectroscopy data are complemented by scanning tunneling microscope images to confirm the direct hydrogen-silicon bonding in boron-doped grain boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sinton, R.A. and Swanson, R.M., Proc. 19th IEEE Photovoltaic Spec. Conf. (IEEE, New York:1987) pp.Google Scholar
2. Green, M.A., Wenham, S.R. and Blakers, A.W., Proc. 19th IEEE Photovoltaic Spec. Conf. (IEEE, New York: 1987) pp. 612. Also, A.W. Blakers and M.A. Green, Appl. Phys. Lett. 48, 215 (1986).Google Scholar
3. Seager, C.H., Sharp, D.J., Panitz, J.K.G. and Hanoka, J.I., J. Phys. C1 43, 103 (1982).Google Scholar
4. Ginley, D.S. and Haaland, D.M., Proc.18th IEEE Photovoltaic Spec. Conf. IEEE, New York; 1986) pp. 999–1002.Google Scholar
5. Dube, C. and Hanoka, J.I., Appl. Phys Lett. 45, 1135 (1984).CrossRefGoogle Scholar
6. Martinuzzi, S., Sebbar, M.A. and Gervais, J., Appl. Phys. Lett. 47, 376 (1985); Also, S. Martinuzzi, H. El-Ghitani, L. Ammor, M. Pasquinelli,and H Poitevin, Proc. 19th IEEE Photovoltaic Spec. Conf. (IEEE, New York: 1987) pp. 1069–74.CrossRefGoogle Scholar
7. Spear, W.E. and LeComer, P.G., Solid-State Commun. 17, 1193 (1975).CrossRefGoogle Scholar
8. Dube, C., Hanoka, J.I. and Sandstrom, D.B., Appl. Phys. Lett. 44, 425 (1983).CrossRefGoogle Scholar
9. Redfield, D., Appl. Phys. Lett. 38, 174 (1981).CrossRefGoogle Scholar
10. Hwang, W., Card, H.C. and Yang, E.S., Appl. Phys. Lett. 36, 315 (1980).CrossRefGoogle Scholar
11. Fossum, J.G. and Lindholm, F.A., IEEE Trans. Electron Devices ED27, 692 (1980).CrossRefGoogle Scholar
12. Seager, C.H., Sharp, D.J., Panitz, J.K.G. and D'Aiello, R., J. Vac. Sci. Technol. 29, 430 (1982).CrossRefGoogle Scholar
13. Pankove, J.I., Carlson, D.E., Berdeyheiser, J.E. and Wance, R.O., Phys. Rev. Lett. 51, 2224 (1983).CrossRefGoogle Scholar
14. Pankove, J.I., Wance, R.O. and Berdeyheiser, J.E., Appl Phys. Lett. 5, 1100 (1984).CrossRefGoogle Scholar
15. Pankove, J.I., Zanazucchi, P.J. and Magee, C.W.,Appl. Phys.Lett. 46, 787 (1985).CrossRefGoogle Scholar
16. Sah, C.T., Sun, J.Y.C. and Tzou, J.J., App. Phys. Lett. 43, 204 (1983).CrossRefGoogle Scholar
17. Sah, C.T., Sun, J.Y.C. and Tzou, J.J., appl. Phys. Lett. 55, 1525 (1984).Google Scholar
18. Pearton, S.J., Phys. Rev. Lett. 53, 855 (1984).CrossRefGoogle Scholar
19. Dadgar, S., Hsu, C.C-H., Pan, S.C-S. and Sah, C.T., J. Appl. Phys. 60, 1422 (1986).CrossRefGoogle Scholar
20. Johnson, N.M. and Moyer, M.D., Appl. Phys. Lett. 46, 787 (1985). Also, N.M. Johnson, Phys. Rev. B 31, 5525 (1985).CrossRefGoogle Scholar
21. Tavendale, A.J., Alexiev, D. and Williams, A.A., Appl. Phys. Lett. 44, 606 (1984).Google Scholar
22. Hansen, W.L., Pearton, S.J. and Haller, E.E., Appl. Phys. Lett. 44, 606 (1984).CrossRefGoogle Scholar
23. Kazmerski, L.L., Rev. Bras. de Apl. de Vacuo 5, 271 (1985).Google Scholar
24. Kazmerski, L.L., Proc. 18th IEEE Photovoltaic Spec. Conf. (IEEE, New York; 1986) pp. 72–86.Google Scholar
25. Kazmerski, L.L., J. Vac. Sci. Technol. A 4, 1570 (1986).CrossRefGoogle Scholar
26. Seager, C.H., J. Appl. Phys. 52, 3960 (1981).CrossRefGoogle Scholar
27. Neugroschel, A. and Mazer, J.A., IEEE Trans. Electron Devices ED–29, 225 (1982).CrossRefGoogle Scholar
28. Leray, C., Bouree, J.E. and Rodot, M., J. Phys (Paris) C5, Suppl. 10, 235 (1983).Google Scholar
29. Oualid, J., Bonfils, M., Crest, J.P., Amzil, H., Zehaf, M. and Martinuzzi, S., Rev. Phys. Appl. 17, 119 (1982).CrossRefGoogle Scholar
30. Kazmerski, L.L., J. Vac. Sci. Technol. 20, 423 (1982).CrossRefGoogle Scholar
31. Kazmerski, L.L., J. Vac. Sci. Technol. A 3, 1287 (1985).CrossRefGoogle Scholar
32. Pantelides, S.T., Appl. Phys. Lett. 50, 995 (1987).CrossRefGoogle Scholar
33. Capizzi, M. and Mittiga, A., Appl. Phys. Lett. 50, 918 (1987).CrossRefGoogle Scholar
34. Kazmerski, L.L., Nelson, A.J., Dhere, R.G., Yahia, A. and Abou-Elfotouh, F., J. Vac. Sci. Technol. A (1988) in-press.Google Scholar
35. Burnham, N.A., Fisher, R.F., Asher, S.E. and Kazmerski, L.L., J.Vac. Sci.Technol. A 5, 2016 (1987).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Investigation of Impurity Neutralization and Defect Passivation in Polycrystalline Silicon Solar Cells
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Investigation of Impurity Neutralization and Defect Passivation in Polycrystalline Silicon Solar Cells
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Investigation of Impurity Neutralization and Defect Passivation in Polycrystalline Silicon Solar Cells
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *