Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-17T00:14:14.270Z Has data issue: false hasContentIssue false

Investigation of Imidazole-Based Lithium Conducting Materials

Published online by Cambridge University Press:  01 February 2011

A. R. Czardybon
Affiliation:
McMaster University, Department of Chemistry, andThe Brockhouse Institute for Materials Research, 1280 Main St. W. Hamilton, ON, L8S 4M1, Canada
K. Sivasubramaniam
Affiliation:
McMaster University, Department of Chemistry, andThe Brockhouse Institute for Materials Research, 1280 Main St. W. Hamilton, ON, L8S 4M1, Canada
G.R. Goward
Affiliation:
McMaster University, Department of Chemistry, andThe Brockhouse Institute for Materials Research, 1280 Main St. W. Hamilton, ON, L8S 4M1, Canada
Get access

Abstract

This study aims to develop novel polyelectrolytes including lithiated imidazole heterocycles for use in lithium ion rechargeable batteries. Lithium ion local mobility in these materials is characterized by 6, 7Li solid-state NMR. By comparing these results with macroscopic ionic conductivity, measured by impedance spectroscopy, we will be able to develop a picture of the ionic conductivity at the microscopic level. Multinuclear solid state NMR provides information on microscopic interactions including ionic mobility and ring reorientations which govern the efficiency of conductivity. Our research includes 6, 7Li variable MAS NMR studies at intermediate spinning speeds, relaxation investigations to determine spin-lattice relaxation times (T1) of lithium ion hopping, and 2D exchange spectroscopy to determine possible chemical exchange processes. A very long T1 (135 s at ambient temperature) and an activation energy Ea = 17.2 kJ/mol suggests rigid molecule structure and the absence of the ring reorientation of the model compound, lithium imidazolium (LiIm). We compare this to the behavior of LiIm doped with lithium methanesulfonate, which we show to form a new ionic complex with lower T1 and corresponding lower activation energy. With the goal of creating new polyelectrolytes, we have synthesized electrolytes incorporating lithiated imidazole rings, where lithium transport may be independent of polymer-backbone flexibility, and thus polymers with high Tg may be viable. Such materials are highly desirable for secondary lithium polymer battery applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Kreuer, K. D., Chem. Mater., 8, 610641 (1996).Google Scholar
2 Schuster, M., Meyer, W.H., Wegner, G., Herz, H.G., Ise, M., Schuster, M., Kreuer, K.D., Maier, J.; Solid State Ionics, 145, 8592 (2001).Google Scholar
3 Schuster, M.F.H., Meyer, W.H., Annu. Rev. Mater.Res., 33, 233261, (2003).Google Scholar
4 Bozkurt, A., Meyer, W.H., Gutmann, J., Wegner, G., State Ionics, 164, 169176 (2003).Google Scholar
5 Goward, G.R., Schuster, M.F.H., Sebastiani, D., Schnell, I., Spiess, H.W.; J. Phys.Chem. B., 106, 93229334 (2002).Google Scholar
6 Carrette, K., Friedrich, A., Stimming, U.; Chemphyschem., 1, 162193 (2000).Google Scholar
7 Tarascon, J.M., Armand, M.; Nature, 414 359 (2001).Google Scholar
8 Goward, G.R., Saalwachter, K., Fischbach, I., Spiess, H.W., Solid State Nucl. Magn. Reson., 24, 150162, (2003).Google Scholar
9 Fischbach, I., Spiess, H.W., Saalwachter, K., Fischbach, I., Goward, G.R., J. Phys.Chem.B, in press. Google Scholar
10 Munch, W., Kreuer, K. D., Silvestri, W., Maier, J., Seifert, G., Solid State Ionics, 145, 437 (2001).Google Scholar
11 Hickman, B.S., Mascal, M., Titman, J.J., Wood, I.G.; J. Am.Chem.Soc., 121, 1148611490 (1999).Google Scholar
12 Vagedes, D.; Erker, G.; Frohlich, R., J. Organomet. Chem.), 641(1–2), 148155 (2002).Google Scholar
13 Herz, H., Kreuer, K., Maier, J., Scharfenberger, G., Schuster, M., Meyer, W.; Electrochim. Acta, 48 2165, (2003).Google Scholar
14 Czardybon, A., Goward, G.R., in preparation.Google Scholar