Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-11T02:02:14.988Z Has data issue: false hasContentIssue false

Investigation of Ge, As, and Au Diffusion in Non-Alloyed Epitaxial Au-Ge Ohmic Contacts to n-GaAs Using Secondary Ion Mass Spectroscopy Backside Sputter Depth-Profiling

Published online by Cambridge University Press:  26 February 2011

H. S. LEE
Affiliation:
Electronics Technology and Devices Laboratory, U.S. Army, Fort Monmouth, NJ 07703–5601
R. T. Lareau
Affiliation:
Electronics Technology and Devices Laboratory, U.S. Army, Fort Monmouth, NJ 07703–5601
S. N. Schauer
Affiliation:
Electronics Technology and Devices Laboratory, U.S. Army, Fort Monmouth, NJ 07703–5601
R. P. Moerkirk
Affiliation:
Electronics Technology and Devices Laboratory, U.S. Army, Fort Monmouth, NJ 07703–5601
K. A. Jones
Affiliation:
Electronics Technology and Devices Laboratory, U.S. Army, Fort Monmouth, NJ 07703–5601
S. Elagoz
Affiliation:
Dept. of Physics, University of Michigan, Ann Arbor, MI 48109
W. Va Vra
Affiliation:
Dept. of Physics, University of Michigan, Ann Arbor, MI 48109
R. Clarke
Affiliation:
Dept. of Physics, University of Michigan, Ann Arbor, MI 48109
Get access

Abstract

A SIMS backside sputter depth-profile technique using marker layers is employed to characterize the diffusion profiles of the Ge, As, and Au in the Au-Ge contacts after annealing at 320 C for various times. This technique overcomes difficulties such as ion beam mixing and preferential sputtering and results in high depth resolution measurements since diffusion profiles are measured from low to high concentration. Localized reactions in the form of islands were observed across the surface of the contact after annealing and were composed of Au, Ge, and As, as determined by SIMS imaging and Auger depth profiling. Backside SIMS profiles indicate both Ge and Au diffusion into the GaAs substrate in the isalnd regions. Ohmic behavior was obtained after a 3 hour anneal with a the lowest average specific contact resistivity found to be ∼ 7 × 100−6 Ω- cm2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See for example, Palmstrøm, C. J. and Morgan, D.V., in Gallium Arsenide: Materials. Devices. and Circuits,edited by Howes, M. J. and Morgan, D. V. (Wiley, New York, 1985), p. 195.Google Scholar
2. Aina, O., Katz, W., Baliga, B. J., and Rose, K., J. Appl. Phys. 53, 777 (1982).Google Scholar
3. Werthen, J. G. and Scifres, D. R., J. Appl. Phys. 52, 1127 (1981).Google Scholar
4. Kirchner, P. D., Jackson, T. N., Pettit, G. D., and Woodall, J. M., Appl. Phys. Lett. 47, 26 (1985).Google Scholar
5. Barnes, P. A. and Cho, A. Y., Appl. Phys. Lett. 33, 651 (1978).Google Scholar
6. Devlin, W. J., Wood, C. E. C., Stall, R., and Eastman, L. F., Solid-St. Electron. 23 823 (1980).Google Scholar
7. Stall, R. A., Wood, C. E. C., Board, K., Dandekar, N., Eastman, L. F., and Devlin, J., J. Appl. Phys. 52, 4062 (1981).CrossRefGoogle Scholar
8. Dornath-Mohr, M. A., Cole, M. W., Lee, H. S., Fox, D. C., Eckart, D. W., Yerke, L., Wrenn, C. S., Lareau, R. T., Chang, W. H., Jones, K. A., and Cosandey, F., J. Electron. Mater. 19, 1247 (1990).CrossRefGoogle Scholar
9. Shappirio, J. R., Lareau, R. T., Lux, R. A., Finnegan, J. J., Smith, D. D., Heath, L. S., and Taysing-Lara, M., J. Vac. Sci. Tech. A5, 1503 (1987).Google Scholar
10. Lareau, R. T., in SIMS VI, edited by Benninghoven, A., Huber, A. M., and Werner, H. W. (J. Wiley, New York, 1988), p. 437.Google Scholar
11. Palmstrøm, C. J., Schwarz, S. A, Yablonovitch, E., Schwarz, C. L., Florez, L., Gmitter, T. J., Marshall, E. D., and Lau, S. S., J. Appl. Phys. 67, 334 (1990).Google Scholar
12. Schwarz, S. A, Palmstrøm, C. J., Schwarz, C. L., Sands, T., Shantharama, L. G., arbison, J. P., Florez, L., Marshall, E.D., Han, C. C., and Lau, S. S., J. Vac. Sci. Tech. A&, 2079 (1990).Google Scholar
13. Cole, M. W., (unpublished).Google Scholar
14. Lee, H. S., (unpublished).Google Scholar
15. Iladis, A. and Singer, K. E., Solid St. Comm. 49, 99 (1984).CrossRefGoogle Scholar
16. Yeh, L. L. and Holloway, P. H., in Advances in Materials, Processing and Devices in III-V Compound Semiconductors, edited by Dadana, D. K., Eastman, L. F., and Dupuis, R. (Mater. Res. Soc. Proc. 144, Pittsburgh, PA 1988) pp. 607 Google Scholar
17. Weizer, V. G. and Fatemi, N. S., J. Appl. Phys. 64, 4618 (1988).Google Scholar
18. Shaw, D., Atomie Diffusion in Semiconductors, (Plenum, New York, 1973).Google Scholar
19. Sokolov, V. l. and Shishiyanu, F. S., Sov. Phys. Solid State 6, 265 (1964).Google Scholar
20. Byers, R., Bum, K. B., and Sinclair, R., J. Appl. Phys. 61, 2195 (1987).Google Scholar
21. Ogawa, M., J. Appl. Phys 51, 406 (1980).CrossRefGoogle Scholar