Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-4k54s Total loading time: 0.249 Render date: 2021-12-06T03:38:49.484Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Interfaces in CdTe Solar Cells: From Idealized Concepts to Technology

Published online by Cambridge University Press:  01 February 2011

Wolfram Jaegermann
Affiliation:
Darmstadt University of Technology, Institute of Materials Science, Surface Science Division, Petersenstrasse 23, 64287 Darmstadt, Germany
Andreas Klein
Affiliation:
Darmstadt University of Technology, Institute of Materials Science, Surface Science Division, Petersenstrasse 23, 64287 Darmstadt, Germany
Jochen Fritsche
Affiliation:
Darmstadt University of Technology, Institute of Materials Science, Surface Science Division, Petersenstrasse 23, 64287 Darmstadt, Germany
Daniel Kraft
Affiliation:
Darmstadt University of Technology, Institute of Materials Science, Surface Science Division, Petersenstrasse 23, 64287 Darmstadt, Germany
Bettina Späth
Affiliation:
Darmstadt University of Technology, Institute of Materials Science, Surface Science Division, Petersenstrasse 23, 64287 Darmstadt, Germany
Get access

Abstract

In thin film solar cells interfaces between lattice mismatched or dissimilar materials are used for the front and the back contact. A p-i-n device structure should be possible as most simple but ideally suited thin film solar cell. In contrast the interfaces in CdTe solar cells are found to be much more complex containing interdiffused phase boundaries at the front as well as at the back contact. By comparison to non-interdiffused interfaces using contact phases of adapted work functions it can be shown that the contact potentials of the front contact but also of the back contact are dominated by Fermi level pinning. The pinning states are evidently due to dislocation defects at the boundary of CdTe to the contact phases. Based on these results it is concluded that interdiffused phase boundaries or appropriate passivation layers are a precondition for efficient solar cells whenever strongly lattice mismatched or dissimilar materials are combined.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Meyers, P. V., Photovoltaics Advanced Research and Development 1989, 19 Google Scholar
2 Ennaoui, A., 2nd World Renewable Energy Congress, Vol.1 (Pergamon Press) Reading 1992 p.183 Google Scholar
3 Lang, O., Rudolph, R., Klein, A., Pettenkofer, C., Jaegermann, W., Sanchez, J., Segura, A., and Chevy, A., in 13th European Photovoltaic Solar Energy Conference, Nice 1995 (H.S. Stephens), p. 2023.Google Scholar
4 Würfel, P., Physics of Solar Cells, (Wiley-VCH, Berlin) 2004 Google Scholar
5 Ernst, K., Engelhardt, R., Ellmer, K., Kelch, C., Muffler, H.J., Lux-Steiner, M.C., and Könenkamp, R., Thin Solid Films 2001, 387, 26.CrossRefGoogle Scholar
6 Schulmeyer, T., Fritsche, J., Thiβen, A., Klein, A., Jaegermann, W., Campo, M., and Beier, J., Thin Solid Films 2003, 431/432, 84.CrossRefGoogle Scholar
7 Valdna, V., Buschmann, F., and Mellikov, E., J. Cryst. Growth 1996, 161, 164.CrossRefGoogle Scholar
8 Wu, X., Asher, S., Levi, D. H., King, D. E., Yan, Y., Gessert, T. A., and Sheldon, P., J. Appl. Phys. 2001, 89, 4564.CrossRefGoogle Scholar
9 Klein, A. and Schulmeyer, T., in Wide Gap Chalcopyrites, Springer Verlag, Heidelberg in press.Google Scholar
10a) Jaegermann, W., in Photoelectrochemistry and photovoltaics of layered semiconductors (Eds: Lévy, F.) Vol. 14, Kluwer Academic Publishers, Dordrecht 1992, 195 b) A. Klein, Adv. Sol. State Phys. 2004, 44, 13.CrossRefGoogle Scholar
11 Fritsche, J., Kraft, D., Thiβen, A., Mayer, T., Klein, A., and Jaegermann, W., Thin Solid Films 2002, 403404, 252.Google Scholar
12 Fritsche, J., Schulmeyer, T., Kraft, D., Thiβen, A., Klein, A., and Jaegermann, W., Appl. Phys. Lett. 2002, 81, 2297.CrossRefGoogle Scholar
13 Fritsche, J., Schulmeyer, T., Thiβen, A., Klein, A., and Jaegermann, W., Thin Solid Films 2003, 431/432, 267.CrossRefGoogle Scholar
14 Fritsche, J., Thiβen, A., Klein, A., and Jaegermann, W., Thin Solid Films 2001, 387, 158.CrossRefGoogle Scholar
15 Fritsche, J., Gunst, S., Thiβen, A., Gegenwart, R., Klein, A., and Jaegermann, W., Mater. Res. Soc. Symp. Proc. 2001, 668, H5.Google Scholar
16 Fritsche, J., Kraft, D., Thissen, A., Mayer, T., Klein, A., and Jaegermann, W., Mater. Res. Soc. Symp. Proc. 2001, 668, H6.6. Google Scholar
17 Tiefenbacher, S., Pettenkofer, C., and Jaegermann, W., J. Appl. Phys. 2002, 91, 1984.CrossRefGoogle Scholar
18F. Säuberlich and Klein, A., Mater. Res. Soc. Symp. Proc. 2003, 763, B9.10. Google Scholar
19 Rüggeberg, F. and Klein, A., Appl. Phys. A (in press)Google Scholar
20 Mönch, W., in Semiconductor surfaces and interfaces of Springer, Berlin 1995.CrossRefGoogle Scholar
21 Bube, R. H., in Photovoltaic Materials (Eds: Newman, R. C.) Vol. 1 of Series on Properties of Semiconductor Materials, Imperial College Press, London 1998.CrossRefGoogle Scholar
22 Bätzner, D. L., Wendt, R., Romeo, A., Zogg, H., and Tiwari, A. N., Thin Solid Films 2000, 361-362, 463.CrossRefGoogle Scholar
23 Brillson, L. J., Chang, S., Shaw, J., and Viturro, R. E., Vacuum 1990, 41, 1016.CrossRefGoogle Scholar
24 Dharmadasa, I. M., Prog. Crystal Growth and Charact. 1998, 36, 249.CrossRefGoogle Scholar
25 Kraft, D., Späth, B., Fritsche, J., Klein, A. and Jaegermann, W., (in preparation)Google Scholar
26 McCandless, B. E. and Sites, J. R., in Handbook of Photovoltaic Science and Engineering, John Wiley & Sons, Chichester 2003, 617.Google Scholar
27 Wei, S.H. and Zhang, S. B., Phys. Rev. B 2002, 66, 155211.CrossRefGoogle Scholar
28 Grecu, D., Compaan, A. D., Young, D., Jayamaha, U., and Rose, D. H., J. Appl. Phys. 2000, 88, 2490.CrossRefGoogle Scholar
29 Dobson, K. D., Visoly-Fisher, I., Hodes, G., and Cahen, D., Sol. Energy Mat. Sol. Cells 2000, 62, 295.CrossRefGoogle Scholar
30 Huth, P. von, Butler, J. E., Jaegermann, W., and Tenne, R., Journal of the Electrochemical Society 2002, 149, G55 CrossRefGoogle Scholar
31 Kraft, D., Weiler, U., Thissen, A., Tomm, Y., Klein, A., and Jaegermann, W., Thin Solid Films 2003, 431/432, 382.CrossRefGoogle Scholar
32 Duc, T. M., Hsu, C. and Faurie, J. P., Physical Review Letters 1987, 58, 1127.CrossRefGoogle Scholar
33 Rioux, D., Niles, D. W. and Hochst, H., J. Appl. Phys. 1993, 73, 8381.CrossRefGoogle Scholar
34 Späth, B., Fritsche, J., Klein, A. and Jaegermann, W., Thin Solid Films (2005) 480-481, 204 CrossRefGoogle Scholar
35 Späth, B., Fritsche, J., Klein, A. and Jaegermann, W., contribution F8.3Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Interfaces in CdTe Solar Cells: From Idealized Concepts to Technology
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Interfaces in CdTe Solar Cells: From Idealized Concepts to Technology
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Interfaces in CdTe Solar Cells: From Idealized Concepts to Technology
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *