Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T13:39:10.964Z Has data issue: false hasContentIssue false

Interfaces in CdTe Solar Cells: From Idealized Concepts to Technology

Published online by Cambridge University Press:  01 February 2011

Wolfram Jaegermann
Affiliation:
Darmstadt University of Technology, Institute of Materials Science, Surface Science Division, Petersenstrasse 23, 64287 Darmstadt, Germany
Andreas Klein
Affiliation:
Darmstadt University of Technology, Institute of Materials Science, Surface Science Division, Petersenstrasse 23, 64287 Darmstadt, Germany
Jochen Fritsche
Affiliation:
Darmstadt University of Technology, Institute of Materials Science, Surface Science Division, Petersenstrasse 23, 64287 Darmstadt, Germany
Daniel Kraft
Affiliation:
Darmstadt University of Technology, Institute of Materials Science, Surface Science Division, Petersenstrasse 23, 64287 Darmstadt, Germany
Bettina Späth
Affiliation:
Darmstadt University of Technology, Institute of Materials Science, Surface Science Division, Petersenstrasse 23, 64287 Darmstadt, Germany
Get access

Abstract

In thin film solar cells interfaces between lattice mismatched or dissimilar materials are used for the front and the back contact. A p-i-n device structure should be possible as most simple but ideally suited thin film solar cell. In contrast the interfaces in CdTe solar cells are found to be much more complex containing interdiffused phase boundaries at the front as well as at the back contact. By comparison to non-interdiffused interfaces using contact phases of adapted work functions it can be shown that the contact potentials of the front contact but also of the back contact are dominated by Fermi level pinning. The pinning states are evidently due to dislocation defects at the boundary of CdTe to the contact phases. Based on these results it is concluded that interdiffused phase boundaries or appropriate passivation layers are a precondition for efficient solar cells whenever strongly lattice mismatched or dissimilar materials are combined.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Meyers, P. V., Photovoltaics Advanced Research and Development 1989, 19 Google Scholar
2 Ennaoui, A., 2nd World Renewable Energy Congress, Vol.1 (Pergamon Press) Reading 1992 p.183 Google Scholar
3 Lang, O., Rudolph, R., Klein, A., Pettenkofer, C., Jaegermann, W., Sanchez, J., Segura, A., and Chevy, A., in 13th European Photovoltaic Solar Energy Conference, Nice 1995 (H.S. Stephens), p. 2023.Google Scholar
4 Würfel, P., Physics of Solar Cells, (Wiley-VCH, Berlin) 2004 Google Scholar
5 Ernst, K., Engelhardt, R., Ellmer, K., Kelch, C., Muffler, H.J., Lux-Steiner, M.C., and Könenkamp, R., Thin Solid Films 2001, 387, 26.Google Scholar
6 Schulmeyer, T., Fritsche, J., Thiβen, A., Klein, A., Jaegermann, W., Campo, M., and Beier, J., Thin Solid Films 2003, 431/432, 84.Google Scholar
7 Valdna, V., Buschmann, F., and Mellikov, E., J. Cryst. Growth 1996, 161, 164.Google Scholar
8 Wu, X., Asher, S., Levi, D. H., King, D. E., Yan, Y., Gessert, T. A., and Sheldon, P., J. Appl. Phys. 2001, 89, 4564.Google Scholar
9 Klein, A. and Schulmeyer, T., in Wide Gap Chalcopyrites, Springer Verlag, Heidelberg in press.Google Scholar
10a) Jaegermann, W., in Photoelectrochemistry and photovoltaics of layered semiconductors (Eds: Lévy, F.) Vol. 14, Kluwer Academic Publishers, Dordrecht 1992, 195 b) A. Klein, Adv. Sol. State Phys. 2004, 44, 13.Google Scholar
11 Fritsche, J., Kraft, D., Thiβen, A., Mayer, T., Klein, A., and Jaegermann, W., Thin Solid Films 2002, 403404, 252.Google Scholar
12 Fritsche, J., Schulmeyer, T., Kraft, D., Thiβen, A., Klein, A., and Jaegermann, W., Appl. Phys. Lett. 2002, 81, 2297.Google Scholar
13 Fritsche, J., Schulmeyer, T., Thiβen, A., Klein, A., and Jaegermann, W., Thin Solid Films 2003, 431/432, 267.Google Scholar
14 Fritsche, J., Thiβen, A., Klein, A., and Jaegermann, W., Thin Solid Films 2001, 387, 158.Google Scholar
15 Fritsche, J., Gunst, S., Thiβen, A., Gegenwart, R., Klein, A., and Jaegermann, W., Mater. Res. Soc. Symp. Proc. 2001, 668, H5.Google Scholar
16 Fritsche, J., Kraft, D., Thissen, A., Mayer, T., Klein, A., and Jaegermann, W., Mater. Res. Soc. Symp. Proc. 2001, 668, H6.6. Google Scholar
17 Tiefenbacher, S., Pettenkofer, C., and Jaegermann, W., J. Appl. Phys. 2002, 91, 1984.Google Scholar
18F. Säuberlich and Klein, A., Mater. Res. Soc. Symp. Proc. 2003, 763, B9.10. Google Scholar
19 Rüggeberg, F. and Klein, A., Appl. Phys. A (in press)Google Scholar
20 Mönch, W., in Semiconductor surfaces and interfaces of Springer, Berlin 1995.Google Scholar
21 Bube, R. H., in Photovoltaic Materials (Eds: Newman, R. C.) Vol. 1 of Series on Properties of Semiconductor Materials, Imperial College Press, London 1998.Google Scholar
22 Bätzner, D. L., Wendt, R., Romeo, A., Zogg, H., and Tiwari, A. N., Thin Solid Films 2000, 361-362, 463.Google Scholar
23 Brillson, L. J., Chang, S., Shaw, J., and Viturro, R. E., Vacuum 1990, 41, 1016.Google Scholar
24 Dharmadasa, I. M., Prog. Crystal Growth and Charact. 1998, 36, 249.Google Scholar
25 Kraft, D., Späth, B., Fritsche, J., Klein, A. and Jaegermann, W., (in preparation)Google Scholar
26 McCandless, B. E. and Sites, J. R., in Handbook of Photovoltaic Science and Engineering, John Wiley & Sons, Chichester 2003, 617.Google Scholar
27 Wei, S.H. and Zhang, S. B., Phys. Rev. B 2002, 66, 155211.Google Scholar
28 Grecu, D., Compaan, A. D., Young, D., Jayamaha, U., and Rose, D. H., J. Appl. Phys. 2000, 88, 2490.Google Scholar
29 Dobson, K. D., Visoly-Fisher, I., Hodes, G., and Cahen, D., Sol. Energy Mat. Sol. Cells 2000, 62, 295.Google Scholar
30 Huth, P. von, Butler, J. E., Jaegermann, W., and Tenne, R., Journal of the Electrochemical Society 2002, 149, G55 Google Scholar
31 Kraft, D., Weiler, U., Thissen, A., Tomm, Y., Klein, A., and Jaegermann, W., Thin Solid Films 2003, 431/432, 382.Google Scholar
32 Duc, T. M., Hsu, C. and Faurie, J. P., Physical Review Letters 1987, 58, 1127.Google Scholar
33 Rioux, D., Niles, D. W. and Hochst, H., J. Appl. Phys. 1993, 73, 8381.Google Scholar
34 Späth, B., Fritsche, J., Klein, A. and Jaegermann, W., Thin Solid Films (2005) 480-481, 204 Google Scholar
35 Späth, B., Fritsche, J., Klein, A. and Jaegermann, W., contribution F8.3Google Scholar