Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-22T22:43:41.212Z Has data issue: false hasContentIssue false

Intercluster Interaction of TiO2 Nanoclusters Using Variable-Charge Interatomic Potentials

Published online by Cambridge University Press:  21 February 2011

Shuji Ogata
Department of Applied Sciences, Yamaguchi University, Ube 755-8611,
Hiroshi Iyetomi
Department of Physics, Niigata University, Niigata 950-2181, Japan
Kenji Tsuruta
Departnent of Electrical and Electronic Engineering, Okayama University, Okayama 700-8530, Japan
Fuyuki Shimojo
Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
Rajiv K. Kalia
Concurrent Computing Laboratory for Materials Simulations, Louisiana State University, Baton Rouge, LA 70803-4001
Aiichiro Nakano
Concurrent Computing Laboratory for Materials Simulations, Louisiana State University, Baton Rouge, LA 70803-4001
Priya Vashishta
Concurrent Computing Laboratory for Materials Simulations, Louisiana State University, Baton Rouge, LA 70803-4001
Get access


A new interatomic potential has been developed for molecular-dynamics simulations of TiO2 based on the formalism of Streitz and Mintmire [J. Adhesion Sci. Technol. 8, 853 (1994)], in which atomic charges vary dynamically according to the generalized electronegativity-equalization principle. The present potential reproduces various quantities of rutile crystal including vibrational density of states, static dielectric constants, melting temperature, elastic moduli, and surface relaxation. Calculated cohesive-energy and dielectric constants for anatase crystal agree well with experimental data. The potential is applied to TiO2 nanoclusters (size 60-80Å) for both anatase and rutile phases to analyze their equilibrium configuration and spacecharge distribution. Stable double-charge layer is found in the surface region of a spherical nanocluster for both rutile and anatase, resulting in enhanced Coulomb-repulsion between the nanoclusters at close proximity.

Research Article
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1. Nanomaterials Synthesis, Properties, and Application, edited by Edelstein, A.S. and Cammarata, R.C. (ICP Pub., London, 1996).Google Scholar
2. Concise Encyclopedia of Advanced Ceramic Materials, edited by Brook, R.J. (Pergamon, Cambridge, 1991), pp. 486488.Google Scholar
3. Streitz, F.H. and Mintmire, J.W., J. Adhesion Sci. Technol. 8, 853 (1994).Google Scholar
4. Ogata, S., Iyetomi, H., Tsuruta, K., Shimojo, F., Kalia, R.K., Nakano, A., and Vashishta, P., J. Appl. Phys. 86, 3036 (1999).Google Scholar
5. Rappe, A.K. and Goddard, W.A., J. Phys. Chem. 95, 3355 (1991).Google Scholar
6. Ramamoorthy, M., Vanderbilt, D., and King-Smith, R.D., Phys. Rev. B 49, 16721 (1994).Google Scholar
7. Schelling, P.K., Yu, N., and Halley, J.W., Phys. Rev. B 58, 1279 (1998).Google Scholar
8. Abrahams, J.C. and Bernstein, J.L., J. Chem. Phys. 55, 3206 (1971).Google Scholar
9. Traylor, J.G., Smith, H.G., Nicklow, R.M., and Wilkson, M.K., Phys. Rev. B 3, 3457 (1971).Google Scholar
10. CRC Handbook of Chemistry and Physics, 79th edn. (CRC Press, Florida, 1996).Google Scholar
11. Manghnani, M.H., J. Geophys. Res. 74, 4317 (1969).Google Scholar
12. Parker, R.A., Phys. Rev. 124, 1719 (1961).Google Scholar
13. JANAF Thermodynamic Tables, 3rd edn, edited by Chase, et al. (AIP, New York, 1985).Google Scholar
14. Siegel, R.W., Ramasamy, S., Hahn, H., Zongquan, L., Ting, L., and Gronsky, R., J. Mater. Res. 3, 1367 (1988).Google Scholar
15. Hahn, H., Logas, J., and Averback, R.S., J. Mater. Res. 5, 609 (1990).Google Scholar
16. Xu, Q. and Anderson, M.A., Mat. Res. Soc. Symp. Proc. 132, 41 (1989).Google Scholar
17. Kumar, K.-N.P., Keizer, K., Burggraaf, A.J., Okubo, T., Nagamoto, H., and Morooka, S., Nature 358, 48 (1992).Google Scholar