Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T03:43:34.085Z Has data issue: false hasContentIssue false

In-situ Microscopic Study of Cu Intragranular Electromigration

Published online by Cambridge University Press:  26 February 2011

Kuan-Chia Chen
Affiliation:
d927535@oz.nthu.edu.tw, materials science and engineering, NTHU, 101, Section 2 Kuang Fu Road, Hsinchu, Taiwan, 30013, Taiwan
Chien-Neng Liao
Affiliation:
cnliao@mse.nthu.edu.tw, Materials Science and Engineering, NTHU, Taiwan
Wen-Wei Wu
Affiliation:
wwwu@mse.nthu.edu.tw, Materials Science and Engineering, NTHU, Taiwan
Lih-Juann Chen
Affiliation:
ljchen@mse.nthu.edu.tw, Materials Science and Engineering, NTHU, Taiwan
Get access

Abstract

Electromigration (EM) in unpassivated copper lines at room temperature has been investigated in ultra-high vacuum by in-situ transmission electron microscopy (TEM). The electric current induced atomic migration in a (211)-oriented Cu grain has been successfully recorded in real-time video. The atomic image of the (211) grain was found to vanish directionally when applying an electric current density of 2 × 106 A/cm2 through the Cu line. The results suggested that the combination of {111} planes and <110> directions to be the easiest EM path in crystalline copper. By performing selective area diffraction (SAD) analysis on a single Cu grain with (111) crystal orientation, some unusual electron diffraction patterns appeared after passing an electric current through the Cu line. It is believed that the EM-induced Cu twinning may be held responsible for the unique diffraction patterns

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tu, K. N., J. Appl. Phys. 94, 1 (2003).Google Scholar
2 Ryu, C., Kwon, K. W., Loke, A. L. S., Lee, H., Nogami, T., Dubin, V. M., Kavari, R. A., Ray, G. W., and Wong, S. S., IEEE Trans. Electron. Devices, 46, 1113 (1999).Google Scholar
3 Vanasupa, L., Joo, Y. C., Besser, P. R. and Pramanick, S., J. Appl. Phys., 85, 2583 (1999).Google Scholar
4 Riege, S. P., Prybyla, J. A. and, Hunt, A. W., Appl. Phys. Lett. 69, 2367 (1996).Google Scholar
5 Lau, J. T., Prybyla, J. A., and Theiss, S. K., Appl. Phys. Lett. 76, 164 (2000).Google Scholar
6 Hunt, A. W., Riege, S. P., and Prybyla, J. A., Appl. Phys. Lett. 70, 2541 (1997).wGoogle Scholar
7 Prybyla, J. A., Riege, S. P., Grabowski, S. P., and Hunt, A. W., Appl. Phys. Lett. 73, 1083 (1998).Google Scholar
8 Kraft, O., Arzt, E., Appl. Phys. Lett. 66, 2063 (1995).Google Scholar
9 Liu, C. L., Cohen, J. M., Adams, J. B. and Voter, A. F., Surf. Sci., 253, 334 (1991).Google Scholar
10 Karimi, M. and Tomkowski, T., Phys. Rev. B, 52, 5364 (1995).Google Scholar
11 Magnaterra, A., Phys. Lett., 44A, 63 (1973).Google Scholar
12 Pashley, D. W. and Stowell, M. J., Phil. Mag. 8, 1605 (1963).Google Scholar