Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-28T05:17:13.301Z Has data issue: false hasContentIssue false

Inorganic Gels with Nanometer-Sized Particles

Published online by Cambridge University Press:  25 February 2011

B. J. Tarasevich
Affiliation:
Department of Materials Science and Engineering, and Advanced Materials Technology Program, Washington Technology Center, University of Washington, Seattle, WA 98195
J. Liu
Affiliation:
Department of Materials Science and Engineering, and Advanced Materials Technology Program, Washington Technology Center, University of Washington, Seattle, WA 98195
M. Sarikaya
Affiliation:
Department of Materials Science and Engineering, and Advanced Materials Technology Program, Washington Technology Center, University of Washington, Seattle, WA 98195
I. A. Aksay
Affiliation:
Department of Materials Science and Engineering, and Advanced Materials Technology Program, Washington Technology Center, University of Washington, Seattle, WA 98195
Get access

Abstract

Fundamental issues involving interactions and packing of nanometer-sized particles are being investigated as an extension of previous experimental studies on larger submicron particles and in relationship to general theoretical work on colloidal systems. Relationships between particle interaction energies and packing indicate (1) dense gels can be formed in stable systems by minimization of the hydrodynamic radius and (2) dense clusters can be formed in flocculated systems by the use of weakly attractive particles where particle restructuring occurs. Novel techniques for the formation of nanostructures within polymeric matrices are also introduced to address gel cracking problems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barringer, E. A. and Bowen, H. K., J. Am. Ceram. Soc. 65 [12] C199 (1982).Google Scholar
2. Aksay, I. A. in Advances in Ceramics, Vol. 9, edited by Mangels, J. A. and Messing, G. L. (Am. Ceram. Soc., OH, 1984), p. 94.Google Scholar
3. See articles in Science of Ceramic Chemical Processing, edited by Hench, L. L. and Ulrich, D. R. (Wiley, NY, 1986).Google Scholar
4. Cesarano, J. III and Aksay, I. A., in press, J. Am. Ceram. Soc, April 1988.Google Scholar
5. Rabinovitch, E. M., Johnson, D. W., MacChesney, J. B., Vogel, E. M., J. Amer. Ceram. Soc. 66 [10] 683 (1983).Google Scholar
6. Brinker, C. J., Drotning, W. D., Scherer, G. W., in Better Ceramics Through Chemistry, MRS Proc, Vol. 32, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Elsevier Sci. Pub. Co., Inc., NY, 1984) p. 25.Google Scholar
7. Schaefer, D. W. and Martin, J. E., Phys. Rev. Lett. 52 [26] 2371 (1984).Google Scholar
8. Penfold, J. and Ramsay, J. D. F., J. Chem. Soc. Faraday Trans. 81, 117 (1985).CrossRefGoogle Scholar
9. Th, J.. Overbeek, G. in Colloid Science, Vol. 1, edited by Kruyt, H. R. (Elsevier, 1952).Google Scholar
10. Ramsay, J. D. F. and Booth, B. O., J. Chem. Soc. Faraday Trans. I 79, 173 (1983).Google Scholar
11. Hachisu, S., Kose, A., Kobayashi, Y., and Takano, K., J. Colloid. Interface Science 55 [3] 499 (1976).Google Scholar
12. Ohtsuki, T., Kishimoto, A., Mitaku, S., and Okano, K., Japanese J. of Appl. Phys. 20 [3] 509 (1981).Google Scholar
13. Hachisu, S. and Kobayashi, Y., J. Colloid. Interface Sci. 46 [3] 470 (1974).Google Scholar
14. Shih, W. Y., Aksay, I. A., Kikuchi, R., J. Chem. Physics 86 [9] 5127 (1987).Google Scholar
15. Tarasevich, B. J., Master's Thesis, University of Washington (Seattle, 1988).Google Scholar
16. Overbeek, J.Th., J. Colloid Interface Science 58 [2] 408 (1977).Google Scholar
17. Allen, L. H. and Matijevic, E., J. Colloid interface Sci. 31 [3] 287 (1969).Google Scholar
18. Israelachvili, J. N. and Adams, G. E., J. Chem. Soc. Faraday Trans. 174, 975 (1978).Google Scholar
19. Churaev, N. V. and Derjaguin, B. V., J. Colloid Interface Sci. 103 [2] 542 (1985).CrossRefGoogle Scholar
20. Aubert, C. and Cannell, D. S., Phys. Rev. Lett. 56 [7] 738 (1986).Google Scholar
21. Brinker, C. J. in Transformation of Organometallics with Common and Exotic Materials: Design and Activation, edited by Laine, R. M. (Martinus Nijhoff, Dordrecht, 1988), p. 261.Google Scholar
22. Liu, J., Sarikaya, M., and Aksay, I. A., to be submitted for publication.Google Scholar
23. Schaefer, D. W., Martin, J., Wiltzius, P., and Cannell, D. S., Phys. Rev. Lett. 52 [26] 2371 (1984).Google Scholar
24. Weitz, D. A. and Huang, J. S., in Kinetics of Aggregation and Gelation, edited by Family, F. and Landau, D. P. (Elsevier Science Pub., Amsterdam, 1984), p. 19.Google Scholar
25. Shih, W., Aksay, I. A., and Kikuchi, R., Phys. Rev. A 36 [10] 5015 (1987).Google Scholar
26. Meakin, P., Phys. Rev. Lett. 51, 1119 (1983).Google Scholar
27. Tarasevich, B. J., Aksay, I. A., and Sarikaya, M., in Atomic and Molecular Processing of Electronic and Ceramic Materials, MRS Proc, edited by Aksay, I. A., McVay, G. L., Stoebe, T. G., and Weger, J. F., (Elsevier Sci. Pub. Co., NY, 1988).Google Scholar
28. Tanaka, T., Ishiwata, S., and Ishimoto, C., Phys. Rev. Lett. 38 [14] 2916 (1984).Google Scholar
29. Brinker, C. J., Keefer, K. D., Schaefer, D. W., and Ashley, C. S., J. of Noncrystalline Solids 48, 47 (1982).Google Scholar