Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-w9xp6 Total loading time: 0.193 Render date: 2022-12-05T02:33:20.494Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Influence of Surface Recombination on the Performance of SiNW Solar Cells and the Preparation of a Passivation Film

Published online by Cambridge University Press:  21 February 2013

Shinya Kato
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1-NE-16, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
Yuya Watanabe
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1-NE-16, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
Yasuyoshi Kurokawa
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1-NE-16, O-okayama, Meguro-ku, Tokyo 152-8552, Japan PRESTO, Japan Science and Technology Agency (JST), Japan
Akira Yamada
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1-NE-16, O-okayama, Meguro-ku, Tokyo 152-8552, Japan Photovoltaics Research Center (PVREC), Japan
Yoshimi Ohta
Affiliation:
Advanced Materials Laboratory, Nissan Research Center, Japan
Yusuke Niwa
Affiliation:
Advanced Materials Laboratory, Nissan Research Center, Japan
Masaki Hirota
Affiliation:
Advanced Materials Laboratory, Nissan Research Center, Japan
Get access

Abstract

Al2O3 was deposited on silicon nanowire (SiNW) arrays by atomic layer deposition (ALD) as a passivation layer to reduce surface recombination velocity. As a result, effective minority carrier lifetime was improved from 1.82 to 26.2 μs. From this result, the relative low-surface recombination rate of 2.73 cm/s was obtained from a calculation using one-dimensional device simulation (PC1D). The performance of SiNW solar cells was also simulated by considering the surface recombination velocity on the side of SiNWs using two-dimensional device simulation. It was found that Al2O3 deposited by ALD can improve open-circuit voltage of SiNW solar cells even if the structure has a high-aspect ratio and large surface area. Therefore, improvement in the performance of SiNW solar cells can be expected.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sivakov, V., Andra, G., Gawlik, A., Berger, A., Plentz, J., Falk, F., and Christiansen, S. H., Nano Let. 9 (4), 1549 (2009).CrossRef
Tsakalakos, L., Balch, J., Fronheiser, J., Shih, M. Y., LeBoeuf, S. F., Pietrzykowski, M., Codella, P. J., Korevaar, B. A., Sulima, O., Rand, J., Davuluru, A., and Rapol, U., J Nanophotonics 1, (2007).CrossRef
Chen, C., Jia, R., Yue, H. H., Li, H. F., Liu, X. Y., Wu, D. Q., Ding, W. C., Ye, T. C., Kasai, S., Tamotsu, H., Chu, J. H., and Wang, S. L., J Appl Phys 108 (9), (2010).
Kayes, B. M., Atwater, H. A., and Lewis, N. S., J Appl Phys 97 (11), (2005).CrossRef
Kurokawa, Y., Kato, S., Watanabe, Y., Yamada, A., Ohta, Y., Niwa, Y., and Hirota, M., Jpn J Appl Phys 2012, to be published .
Zhu, J., Yu, Z. F., Burkhard, G. F., Hsu, C. M., Connor, S. T., Xu, Y. Q., Wang, Q., McGehee, M., Fan, S. H., and Cui, Y., Nano Lett 9(1), 279 (2009).CrossRef
Zhang, M. L., Peng, K. Q., Fan, X., Jie, J. S., Zhang, R. Q., Lee, S. T., and Wong, N. B., J Phys Chem C 112 (12), 4444 (2008).CrossRef
Kato, S., Watanabe, Y., Kurokawa, Y., Yamada, A., Ohta, Y., Niwa, Y., and Hirota, M., Jpn J Appl Phys 51 (2), (2012).CrossRef
Chartier, C., Bastide, S., and Levy-Clement, C., Electrochim Acta 53 (17), 5509 (2008).CrossRef
Spurgeon, J. M., Plass, K. E., Kayes, B. M., Brunschwig, B. S., Atwater, H. A., and Lewis, N. S., Appl Phys Lett 93 (3), (2008).CrossRef
Westwater, J., Gosain, D. P., Tomiya, S., Usui, S., and Ruda, H., J Vac Sci Technol B 15 (3), 554 (1997).CrossRef
Wang, N., Tang, Y. H., Zhang, Y. F., Lee, C. S., Bello, I., and Lee, S. T., Chem Phys Lett, 299(2), 237 (1999).CrossRef
Bashouti, M. Y., Stelzner, T., Berger, A., Christiansen, S., and Haick, H., J Phys Chem C, 112(49), 19168 (2008).CrossRef
Bashouti, M. Y., Stelzner, T., Christiansen, S., and Haick, H., J Phys Chem C 113 (33), 14823 (2009).CrossRef
Guo, C. S., Luo, L. B., Yuan, G. D., Yang, X. B., Zhang, R. Q., Zhang, W. J., and Lee, S. T., Angew Chem Int Edit 48 (52), 9896 (2009).CrossRef
Bothe, , Bothe, K., Krain, R., Falster, R., Sinton, R., Prog Photovoltaics, 18(3), 204 (2010).CrossRef
Bowden, S. and Sinton, R. A., J Appl Phys 102 (12), (2007).CrossRef
Brody, J., Rohatgi, A., and Yelundur, V., Prog Photovoltaics 9 (4), 273 (2001).CrossRef
Agostinelli, G., Delabie, A., Vitanov, P., Alexieva, Z., Dekkers, H. F. W., De Wolf, S., Beaucarne, G., Sol Energ Mat Sol C 90 (18–19), 3438 (2006).CrossRef
Saint-Cast, P., Benick, J., Kania, D., Weiss, L., Hofmann, M., Rentsch, J., Preu, R., and Glunz, S. W., Ieee Electr Device L 31 (7), 695 (2010).CrossRef
Schmidt, J., Merkle, A., Brendel, R., Hoex, B., van de Sanden, M. C. M., and Kessels, W. M. M., Prog Photovoltaics 16 (6), 461 (2008).CrossRef
Dingemans, G., van de Sanden, M. C. M., and Kessels, W. M. M., Electrochem Solid St 13 (3), H76 (2010).CrossRef

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Influence of Surface Recombination on the Performance of SiNW Solar Cells and the Preparation of a Passivation Film
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Influence of Surface Recombination on the Performance of SiNW Solar Cells and the Preparation of a Passivation Film
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Influence of Surface Recombination on the Performance of SiNW Solar Cells and the Preparation of a Passivation Film
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *