Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-fmrbl Total loading time: 0.263 Render date: 2022-09-28T22:38:07.608Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Influence of Process Parameters on Resistive Switching in MOCVD NiO Films

Published online by Cambridge University Press:  27 July 2011

X.P. Wang
Affiliation:
IMEC, Kapeldreef 74, B-3001 Leuven, Belgium
D.J. Wouters
Affiliation:
IMEC, Kapeldreef 74, B-3001 Leuven, Belgium Department of Electrical Engineering (ESAT), Katholieke Universiteit Leuven, B-3001 Leuven, Belgium
M. Toeller
Affiliation:
Tokyo Electron Limited, Akasaka Biz Tower, 3-1 Akasaka 5-chome, Minato-ku, Tokyo 107-6325 Japan
J. Meersschaut
Affiliation:
IMEC, Kapeldreef 74, B-3001 Leuven, Belgium
L. Goux
Affiliation:
IMEC, Kapeldreef 74, B-3001 Leuven, Belgium
Y.Y. Chen
Affiliation:
Department of Electrical Engineering (ESAT), Katholieke Universiteit Leuven, B-3001 Leuven, Belgium
B. Govoreanu
Affiliation:
IMEC, Kapeldreef 74, B-3001 Leuven, Belgium
L. Pantisano
Affiliation:
IMEC, Kapeldreef 74, B-3001 Leuven, Belgium
R. Degraeve
Affiliation:
IMEC, Kapeldreef 74, B-3001 Leuven, Belgium
M. Jurczak
Affiliation:
IMEC, Kapeldreef 74, B-3001 Leuven, Belgium
L. Altimime
Affiliation:
IMEC, Kapeldreef 74, B-3001 Leuven, Belgium
J. Kittl
Affiliation:
IMEC, Kapeldreef 74, B-3001 Leuven, Belgium
Get access

Abstract

The unipolar resisitive switching properties of MOCVD deposited NiO in Ni/NiO/TiN stacks is reported. The switching quality is defined as function of RESET current and Roff/Ron ratio, and the importance of the Forming current and voltage on these parameters is discussed. The effect of structural stack variations as NiO thickness, Ti doping, and TiN thickness on the switching behavior of NiO is explained by the effect on the forming current and voltage conditions, and on Joule heating dissipation. Thinner NiO films, Ti doping, as well as thicker top electrode improve the switching quality by decreasing the RESET current and increasing the Roff/Ron ratio.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baek, I. G., Lee, M. S., Seo, S., Lee, M. J., Seo, D. H., Suh, D.-S., Park, J. C., Park, S. O., Kim, H. S., Yoo, I. K., Chung, U-In, Moon, J. T., IEDM Tech. Dig. 587 (2004)Google Scholar
2. Meersschaut, J., Toeller, M., Schaekers, M., Wang, X., Brijs, B., Wouters, D., Jurczak, M., Altimime, L., Van Elshocht, S., Vancoille, E., Physics and Technology of High-k Materials 8, ECS Transactions 33 (3), 313 (2010)Google Scholar
3. Kinoshita, K., Tsunoda, K., Sato, Y., Noshiro, H., Yagaki, S., Aoki, M., Sugiyama, Y., Appl. Phys. Lett. 93, 033506 (2008).CrossRefGoogle Scholar
4. Nardi, F., Ielmini, D., Cagli, C., Spiga, S., Fanciulli, M., Goux, L., Wouters, D. J., Proc. IEEE International Memory Workshop, 66 (2010)Google Scholar
5. Goux, L., Lisoni, J. G., Wang, X. P., Jurczak, M., Wouters, D. J., IEEE Trans. Electron Devices 56, 2363 (2009)CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Influence of Process Parameters on Resistive Switching in MOCVD NiO Films
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Influence of Process Parameters on Resistive Switching in MOCVD NiO Films
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Influence of Process Parameters on Resistive Switching in MOCVD NiO Films
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *