Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-04-30T20:25:21.780Z Has data issue: false hasContentIssue false

Influence of carbon on erbium lattice location in Si:Er

Published online by Cambridge University Press:  17 March 2011

X. T. Ren
Affiliation:
Department of Physics, University at Albany, State University of New York, Albany, NY 12222
M. B. Huang
Affiliation:
Department of Physics, University at Albany, State University of New York, Albany, NY 12222
Get access

Abstract

The 1.5 µm luminescence from Si:Er is known to strongly depend on impurities (e.g. carbon) in silicon. In this work, we investigate the effect of carbon co-doping on the lattice location of Er atoms in Si by Rutherford backscattering(RBS)/channeling techniques. A float-zone (FZ) Si (100) wafer was first amorphized to a depth of ~ 0. 3 µm by Si ions implanted to a dose of ~ 1×1015cm2 at liquid nitrogen temperature. Carbon ions were then implanted into the amorphous silicon, which was recrystallized via solid phase epitaxial growth (SPEG) at 600°C following C implant. Finally Er ions were implanted into the C-doped and C-free Si crystals, with the substrate temperature at 25°C and 300°C respectively. The RBS/channeling results show that the Er redistribution and Si crystallinity are strongly affected by C co-doping. The incorporation of C into Si can significantly suppress Er surface segregation, and modify the lattice location of Er atoms in Si. We discuss these effects in terms of the formation of Er-C defect complexes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kozanecki, A., Sealy, B.J., Homewood, K., J. Alloys and Compounds 300–301, 61 (2000).Google Scholar
2. Polman, A., Custer, J.S., Snoeks, E. and Hoven, G.N. van den, Nucl. Instrum. and Meth. B80/81, 653(1993).Google Scholar
3. Glass, A. M., Physics Today P34, Oct. 1993.Google Scholar
4. Priolo, F., Franzo, G., Coffa, S., Libertino, A., Barklie, R. and Carey, D., J. Appl. Phys. 78, 6 3874 (1995).Google Scholar
5. Zheng, B., Michel, J., Ren, F. Y. G., Kimerling, L. C., Jacobson, D. C. and Poate, J. M., Appl. Phys. Lett. 64, 21 2842 (1994).Google Scholar
6. Michel, J., Benton, J.L., Ferrante, R. F., Jacobson, D. C., Eaglesham, D. J., Fitzgerald, E. A., Poate, J. M. and Kimerling, L. C., J. Appl. Phys. 70, 5 2672 (1991).Google Scholar
7. Libertino, S., Coffa, S., G, Franzo and Priolo, F., J. Appl. Phys. 78, 6 3867 (1995).Google Scholar
8. Priolo, F., Coffa, S., Franzò, G., Spinella, C., Carnera, A. and Bellani, V., J. Appl. Phys. 74, 4936 (1993).Google Scholar
9. Osten, H. J., Lippert, G., Liu, J. P. and Krüger, D., Appl. Phys. Lett. 77, 2000 (2000).Google Scholar
10. Simpson, T. W. and Mitchell, I. V., Mat. Res. Soc. Symp. Proc. 396, 847 (1996).Google Scholar
11. Strane, J. W., Stein, H. J., Lee, S. R., Doyle, B. L., Picraux, S. T. and Mayer, J. W., Appl. Phys. Lett. 63, 2786 (1993).Google Scholar
12. Custer, J. S., Polman, A. and Pinxteren, H. M. van, J. Appl. Phys. 75, 2809 (1994).Google Scholar
13. Needels, M., Schluter, M. and Lannoo, M., Phys. Rev. B 47, 23 15533 (1993).Google Scholar
14. Kozanecki, A., Kaczanowski, J., Wilson, R. and Sealy, B. J., Nucl. Instrum. Meth. B118, 709 (1996).Google Scholar
15. Touboltsev, V. S., Räisänen, J., Johnson, E., Johnson, A. and Sarholt, L., Appl. Phys. Lett. 77, 2154 (2000).Google Scholar
16. Kozanecki, A., Wison, R. J., Sealy, B. J., Kaczanowski, J. and Nowicki, L., Appl. Phys. Lett. 67, 13 1847 (1995).Google Scholar
17. Wahl, U., Vantomme, A., Wachter, J. De, Moons, R., Langouche, G., and Marquew, J. G., Phys. Rev. Lett. 79, 2069 (1997).Google Scholar