Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-20T00:50:35.368Z Has data issue: false hasContentIssue false

Impurity Redistribution In Ion Implanted Si After Picosecond Nd Laser Pulse Irradiation

Published online by Cambridge University Press:  15 February 2011

S.U. Campisano
Istituto Di Fisica, 57 Corso Italia I 95129 Catania (Italy)
P. Baeri
Istituto Di Fisica, 57 Corso Italia I 95129 Catania (Italy)
E. Rimini
Istituto Di Fisica, 57 Corso Italia I 95129 Catania (Italy)
G. Russo
Istituto Di Fisica, 57 Corso Italia I 95129 Catania (Italy)
A.M. Malvezzi
Cise SpA-P.O.Box 12081 1 20100 Milano (Italy)
Get access


Impurity redistribution in Bi-implanted Si and in As-implanted Si has been investigated after irradiation with 25 ps Nd(λ=l.06 μm) laser pulse in the energy range 0.1–1.5 J/cm2 . Channeling effect in combination with 2.0 MeV He+ backscattering in glancing detection has been used to characterize the epitaxial crystallization, the impurity location and its depth distribution. The amorphous to single crystal transition occurs at an energy density of about 0.4 J/cm 2 . Bi atoms are located after crystallization in substitutional lattice sites for the in depth part of the distribution. Part of the Bi atoms accumulated at the sample surface and the amount of segregation increases with the pulse energy density and depends on the substrate orientation. A computer model has been also developed to calculate several parameters of interest, as the melt threshold,the melt duration, the carrier temperature etc including a detailed description of the absorption and of the energy relaxation processes. The calculations indicate that the simple thermal description accounts quantitatively for the experimental data on melt duration and impurity segregation.

Research Article
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1.Bloembergen, N., Kurz, H., Liu, J.M. and Yen, R. in Laser and Eelectron Beam Interaction with Solids, Appleton, B.R. and Celler, G.K. eds. (North Holland,N.Y.1982) p. 3Google Scholar
2.Kim, D.M., Shah, R.R., von der Linde, D. and Crostwait, D.L. in Laser and Electron Beam Interaction with Solids,Appleton, B.R. and Celler, G.K. eds. (North Holland, N.Y. 1982) p. 85Google Scholar
3.Yen, R., Liu, J.M., Kurz, H. and Bloembergen, N.; Appl.Phys. A27,153(1982)Google Scholar
4.Liu, J.M., Kurz, H. and Bloembergen, N., Appl.Phys.Lett. 41,643 (1982)Google Scholar
5.Baeri, P., Campisano, S.U., Foti, G. and Rimini, E., J.Appl.Phys.50,788 (1979)Google Scholar
6.Baeri, P., Foti, G., Poate, J.M., Campisano, S.U. and Cullis, A.G., Appl.Phys.Lett.38,800(1981)Google Scholar
7.Galvin, G.J., Thompson, M.O., Mayer, J.W., Hammond, R.B., Paulter, N. and Peercy, P.S.,Phys.Rev.Lett. 48,33(1982)Google Scholar
8.Campisano, S.U., Baeri, P., Rimini, E., Malvezzi, A.M. and Russo, G.,Appl.Phys.Lett. 41,456(1982)Google Scholar
9.White, C.W., Zehner, D.M., Campisano, S.U. and Cullis, A.G., Chap.4 of Surface Modification and Alloying, Poate, J.M. and Foti, G. eds. (Plenum Press,NY. 1982)Google Scholar
10.Baeri, P. and Campisano, S.U., Chap. 4 of Laser Annealing of Semiconductors Poate, J.M. and Mayer, J.W. eds. (Academic Press, NY.1982).Google Scholar
11.Lietola, A. and Gibbons, J.G.; Appl.Phys.Lett. 40,624(1982).Google Scholar