Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-13T21:25:18.902Z Has data issue: false hasContentIssue false

Impurity Distribution Profiles and Surface Disorder after Laser Induced Diffusion.

Published online by Cambridge University Press:  15 February 2011

E. Fogarassy
Affiliation:
Centre De Recherches Nucléaires Laboratoire Phase, 67037 Strasbourg Cedex France
R. Stuck
Affiliation:
Centre De Recherches Nucléaires Laboratoire Phase, 67037 Strasbourg Cedex France
P. Siffert
Affiliation:
Centre De Recherches Nucléaires Laboratoire Phase, 67037 Strasbourg Cedex France
F. Broutet
Affiliation:
Faculté des Sciences PoitiersFrance
J. C. Desoyer
Affiliation:
Faculté des Sciences PoitiersFrance
Get access

Abstract

A model for laser induced diffusion is proposed, assuming the melting of Si surface under pulsed laser irradiation and the diffusion ,in liquid phase, of a thin filmof impurity deposited according to the “limited source” conditions. Depending on the thickness of the film, it results in a dopant distribution profile with a surface disordered layer induced either by segregation effects or precipitation of the dopant in excess of the solubility limit achieved by laser annealing. Experimental results, obtained for a ruby laser irradiation of thin films of different impurities of group III and V, like antimony, bismuth, gallium and indium deposited on silicon substrates are in good agreement with the model. Their effective segregation coefficients have been deduced by fitting the experimental amount of dopant precipitated in the disordered surface layer with the numerical calculations. A cellular structure is seen on surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Narayan, J., Young, RT and Wood, R.F., Applied Phys.Lett. 33 (4),338 (1978)Google Scholar
2.Fogarassy, E., Stuck, R., Grob, J. J. and Siffert, P., J. Appl. Phys. 52 (2), 1076 (1981)Google Scholar
3.Fogarassy, E., Stuck, R., Grob, J. J. and Siffert, P.“Laser and Electron Beam Processing of Materials” edited by White, C. W. and Peercy, P. S., Academic Press (1980) p. 117.Google Scholar
4.Baeri, P., Campisano, S.U., Foti, G. and Rimini, E., J. Appl. Phys. 50 (2) 788 (1979).Google Scholar
5.White, C. W., Wilson, S. R., Appleton, B. R. and Young, F.W. Jr., J. Appl. Phys. 51 (1) 738 (1980).Google Scholar
6. Monographie sur les métaux de haute pureté, Chaudron, G., Masson Paris 1972.Google Scholar
7.Toulemonde, M. and Heddache, R., Private CommunicationGoogle Scholar
8.Crank, J., The mathematics of diffusion - Oxford at the Clarendon Press (1956)Google Scholar
9.Kodera, H.Jpn J.Appl.Phys. 2, 212 (1963)Google Scholar
10.Wang, J.C., Wood, R. F., White, C. W., Appleton, B. R., Proko, P. P., Wilson, S.R. and Christie, W. H., The proceedings of the Boston Conference on “Laser Solid interactions and Laser processing - 1978” edited by Ferris, S.D., Leamy, H.J. and Poate, J.M.. AlP Conf.50 (1979) p.123Google Scholar
11.Trumbore, F.A.Bell Syst.Techn. J. 39,205 (1960)Google Scholar
12.Baker, J.C. and Cahn, J.W.,Acta Met. 17 (1969)Google Scholar
13.Jackson, K.A., Gilmer, G.H. and Leamy, H.J.“Laser and electron beam processing of materials” edited by White, C.W. and Peercy, P.S.Academic Press (1980) p. 104.Google Scholar
14.Stuck, R., Fogarassy, E., Grob, J. J. and Siffert, P., Appl. Phys. 23, 15 (1980).Google Scholar
15.Campisano, S. U., Baeri, P., Grimaldi, M. G., Foti, G. and Rimini, E., J. Appl. Phys. 51 (7), 3968 (1980).Google Scholar
16.Van Gurp, G.J., Eggermont, G.E., Tamminga, Y., Stacy, W. T. and Gijsbers, J.R.M.Appl. Phys. Lett. 35 (3),273 (1979).Google Scholar
17.Narayan, J., J. AppI. Phys. 53 (3), 1289 (1981).Google Scholar