Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-08-06T21:04:56.005Z Has data issue: false hasContentIssue false

A Historical View of the Role of Ion-Implantation Defects in PN Junction Formation for Devices

Published online by Cambridge University Press:  17 March 2011

R.B. Fair*
Affiliation:
ECE Department, Duke University Durham, NC 27708rfair@ee.duke.edu
Get access

Abstract

The early use of ion bombardment of semiconductors for forming doped regions was viewed as a room-temperature process by solid-state scientists. Many interesting, but relatively useless devices were made by implanting species such as Na and Cs ions to form pn junctions from radiation damage or interstitial impurities. The revolutionary idea that one could implant Group III and V dopants into semiconductors and then heat the implanted substrate to above 800C didn't appear until 10 years after Shockley's 1954 patent. At that time, implantation damage became relatively unimportant as processes evolved with high temperature, long time diffusions. With the advent of rapid thermal processing, the attention shifted back to implantation-induced defects to explain transient-enhanced-diffusion effects. Today's challenges in forming ultra-shallow junctions by ion-implantation are in controlling and minimizing the damage structures that dominate junction activation and diffusion. Low-energy implants have been effective in this regard.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]. Freeman, J.H., Rad. Effects, 100, 161248 (1986).10.1080/00337578708213249Google Scholar
[2]. Bohr, N., Phil. Mag., 25, 10 (1913).10.1080/14786440108634305Google Scholar
[3]. Ohl, R.S., “Semiconductor Translating Devices,”. U.S. Patent No. 2,750,541 (filed Jan. 31, 1950; issued June 12, 1956).Google Scholar
[4]. Lark-Horovitz, K., Bentor, S., and Davis, R.E., “Photoelectric and Thermoelectric Device Utilizing Semiconducting Material,” U.S. Patent # 2,588,254 (filed May 9, 1950; issued March 4, 1952).Google Scholar
[5]. Sziklai, G.C., “Multielement Semiconductor Devices,” U.S. Patent No. 2,735,948 (filed Jan. 21, 1953; issued Feb. 21, 1956).Google Scholar
[6]. Shockley, W., “Forming Semiconductive Devices by Ionic Bombardment,” U.S. Patent No. 2,787564, (filed Oct. 28, 1954; issued April 2, 1957).Google Scholar
[7]. Ohl, R.S., Bell Syst. Tech. J., 31, 104 (1952).10.1002/j.1538-7305.1952.tb01378.xGoogle Scholar
[8]. Kingsbury, E.F. and Ohl, R.S., Bell Syst. Tech. J., 31, 802(1952).10.1002/j.1538-7305.1952.tb01407.xGoogle Scholar
[9]. Thornton, C.G. and Hanley, L.D., Proc. I.R.E., 43, 186 (1955).10.1109/JRPROC.1955.278077Google Scholar
[10]. Rourke, F.M., Sheffield, J.C., and White, F.A., Rev. Sci. Instr. 32, 455456 (1961).10.1063/1.1717405Google Scholar
[11]. Alvager, T. and Hansen, N.J., Rev. Sci. Instr., 33, 567 (1962).10.1063/1.1717929Google Scholar
[12]. King, W.J. and Solomon, S.J., Abstract No. 58, Spring Meeting of the Electrochemical Society, May, 1962.Google Scholar
[13]. Strack, H., J. Appl. Phys., 34, 2405 (1963).10.1063/1.1702756Google Scholar
[14]. Amadei, L. and Goetzberger, A., Solid-State Electronics, 7, 487 (1964).10.1016/0038-1101(64)90047-4Google Scholar
[15]. Ferber, R.R., IEEE Trans. Nuc. Sci., 10, 15 (1963).10.1109/TNS2.1963.4315447Google Scholar
[16]. Cohen, J., Ruth, R.P., Hon, J.F., and Steele, R.L., The Electrochemical Society, Spring Meeting, San Francisco, May 1965.Google Scholar
[17]. McCaldin, J.O., “Method of Treating Semiconductor Device by Ionic Bombardment,” U.S. Patent 3,328,210, June 27, 1967.Google Scholar
[18]. Snow, E.H., Grove, A.S., Deal, B.E., and Sah, C.T., J. Appl. Phys., 36 1664 (1965).10.1063/1.1703105Google Scholar
[19]. Mayer, J.W., Eriksson, L., and Davies, J.A., Ion Implantation in Semiconductors, New York: Academic Press, 1970.Google Scholar
[20]. Lindhard, J., Mat. Fys. Medd. Dan. Vid. Selsk., 34, No. 14 (1965).Google Scholar
[21]. Davies, J.A., Ball, G.C., Brown, F., and Domeij, B., Canad. J. Phys., 42, 1070 (1964).10.1139/p64-100Google Scholar
[22]. Manchester, K.E., Sibley, C.B., and Alton, G., Nucl. Instr. and Methods, 38, 169174 (1965).10.1016/0029-554X(65)90127-8Google Scholar
[23]. King, W.J., Burrill, J.T., Harrison, S.. Martin, F., and Kellett, C., Nucl. Instr. and Methods, 38, 178179 (1965).10.1016/0029-554X(65)90129-1Google Scholar
[24]. King, W.J. and Solomon, S.J., Abstract No. 58, Spring Meeting of the Electrochemical Society, May, 1962.Google Scholar
[25]. Lindard, J., Scharff, M., and Schiott, H., Mat. Fys. Medd. Dan. Vid. Sclsk., 33, 1 (1963).Google Scholar
[26]. Connolly, R., Electronic News, Monday, June 28, 1965.Google Scholar
[27]. Bower, R.W. and Dill, R.G., International Electron Devices Meeting, IEEE, paper. 16.6, Washington D.C., October 26-28, 1966.Google Scholar
[28]. Bower, R.W., Dill, H.G. and Aubuchon, K.G., International Electron Devices Meeting, IEEE, paper. 6.3, Washington D.C., October, 1967.Google Scholar
[29]. Bower, R.W., U.S. Patent No. 3,615,934 (filed Oct. 30, 1967, issued Oct. 26, 1971).Google Scholar
[30]. Bower, R.W., Dill, H.G., Aubuchon, K.G., and Thompson, S.A., IEEE Trans. Electron Dev., ED–15, 757 (1968).10.1109/T-ED.1968.16511Google Scholar
[31]. Dill, H.G., Bower, R.W., and Toombs, T.N., Radiation Effects, 7, 45 (1971).10.1080/00337577108232563Google Scholar
[32]. Faggin, F. and Klein, T., Solid State Electronics, 1, 1125 (1970).10.1016/0038-1101(70)90124-3Google Scholar
[33]. Gibbons, J.F., Proc. of IEEE, 60, 1062 (1972).10.1109/PROC.1972.8854Google Scholar
[34]. Blamires, N.G., Matthews, M.D., and Nelson, R.S., Phys. Lett., 28A, 178 (1968).10.1016/0375-9601(68)90186-2Google Scholar
[35]. Davies, D.E., Appl. Phys. Lett., 14, 227 (1969).10.1063/1.1652790Google Scholar
[36]. Johansson, N.G.E. and Mayer, J.W., Solid State Electronics, 13, 123 (1970).10.1016/0038-1101(70)90042-0Google Scholar
[37]. Lee, D.H. and Mayer, J.W., Proc. of IEEE, 62, 1241 (1974).10.1109/PROC.1974.9603Google Scholar
[38]. Bower, R.W., in Ion Implantation in Semiconductors, Mayer, J.W., Eriksson, L., and Davies, J.A., Eds. New York, NY: Academic Press, 1970, pp. 224249.10.1016/B978-0-12-480850-8.50011-8Google Scholar
[39]. Wagner, S., J. Electrochemical Soc. 119, 1570 (1972).10.1149/1.2404044Google Scholar
[40]. Carr, W.N. and Mize, J.P., MOS/LSI Design and Application, Texas Instruments Electronic Series, Mc Graw-Hill, New York, 1972, p. 72.Google Scholar
[41]. Parkinson, G., Electronic News, Monday, June 28, 1965.Google Scholar
[42]. Macdougall, J., Manchester, K., and Palmer, R.B., Electronics, 43, 86, June 22, 1970.Google Scholar
[43]. Benton, J.L., Celler, G.K., Jacobson, D.C., Kimerling, L.C., Lischner, D.J., Miller, G.L., ans Robinson, Mc.D., Mat. Res. Soc. Symp. Proc., “Laser and Electron Beam Interactions with Solids, eds. Appleton, B.R. and Celler, G.K., vol. 4, p. 765 (Elsevier Pub. Co., 1982).Google Scholar
[44] Fair, R.B., Wortman, J.J., Liu, J., Tischler, M., Masnari, N.A., and Duh, K.Y., Device Research Conf., Burlington, VT, 1983.Google Scholar
[45]. Fair, R. B., Wortman, J. J., Liu, J., 1983 IEDM Tech. Dig., pp. 658661 (1983).Google Scholar
[46]. Sadana, D.K., Shatas, S.C., and Gat, A., Proc. of Microscopy of Semiconducting Materials, Inst. of Phys., London (1983).Google Scholar
[47]. Cho, K., Numan, M., Finstad, T.G., Chu, W.K., Liu, J., and Wortman, J.J., Appl. Phys. Lett, 47, 1321 (1985).10.1063/1.96267Google Scholar
[48]. Kim, Y., Massoud, H.Z. and Fair, R.B., J. Electronic Mater., 18, 143 (1989).10.1007/BF02657400Google Scholar
[49]. Hong, S.N.et al, Appl. Phys. Lett., 53, 1741 (1988).10.1063/1.100470Google Scholar
[50]. Fair, R.B. and Ruggles, G.A., Solid State Tech., 33, 107 (1990).Google Scholar