Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-11T18:21:52.552Z Has data issue: false hasContentIssue false

Higher efficiency of n-i-p solar cells by Hot-Wire CVD at moderate temperatures

Published online by Cambridge University Press:  17 March 2011

Marieke K. van Veen
Affiliation:
Utrecht University, Debye Institute, Physics of Devices, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands
Ruud E.I. Schropp
Affiliation:
Utrecht University, Debye Institute, Physics of Devices, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands
Get access

Abstract

Hot-Wire deposited amorphous silicon is an excellent material for the incorporation as the absorbing layer in n-i-p solar cells. We decreased the deposition temperature from 430 °C to 250 °C, keeping device quality (opto-)electrical properties of the a-Si:H layers. This enables application of Hot-Wire deposited a-Si:H in p-i-n structures and tandem solar cells. Layers deposited at 250 °C have been applied in efficient n-i-p and n-i-p/n-i-p solar cells. The deposition rate of the intrinsic layer was about 10 Å/s. No optical enhancements, like texturing or back reflectors, were used. Single-junction cells with a fill factor of 0.72 and an open-circuit voltage of 0.89 V have been produced. On a flexible stainless steel substrate, an initial efficiency of 7.2 % was recorded. Tandem cells also show a high fill factor (0.71) and open-circuit voltage (1.70 V), resulting in an initial efficiency of 8.5 %.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mahan, A.H., Carapella, J., Nelson, B.P., Crandall, R.S., Balberg, I., J. Appl. Phys., 69, p. 6728 (1991).Google Scholar
2. Feenstra, K.F., Schropp, R.E.I., Weg, W.F. van der, J. Appl. Phys., 85, p. 6843 (1999).Google Scholar
3. Wang, Q., Iwaniczko, E., Xu, Y., Nelson, B.P., Mahan, A.H., Mat. Res. Soc. Proc., Vol. 557, p. 163 (1999).10.1557/PROC-557-163Google Scholar
4. Wang, Q., Iwaniczko, E., Xu, Y., Nelson, B.P., Mahan, A.H., Crandall, R.S., Branz, H.M., Proc. 28th IEEE PVSC, Anchorage, September 2000, in Press.Google Scholar
5. Bauer, S., Schröder, B., Herbst, W., Lill, M., Proc. 2nd World Conf. on Photovoltaic Energy Conversion, Vienna, July 1998, p. 363.Google Scholar
6. Feenstra, K.F., Rath, J.K., Werf, C.H.M. van der, Hartman, Z., Schropp, R.E.I., Proc. 2nd World Conf. on Photovoltaic Energy Conversion, Vienna, July 1998, p. 956.Google Scholar
7. Schropp, R.E.I., Feenstra, K.F., Molenbroek, E.C., Meiling, H., Rath, J.K., Philos. Mag. B, 76, p. 309 (1997).10.1080/01418639708241096Google Scholar
8. Brodsky, M.H., Cardona, M., Cuomo, J.J., Phys. Rev. B 16, p. 3556 (1977).10.1103/PhysRevB.16.3556Google Scholar
9. Langford, A.A., Fleet, M.L., Nelson, B.P., Lanford, W.A., Maley, N., Phys. Rev. B, 45, p. 13367 (1992).Google Scholar
10. Brockhoff, A.M., Weg, W.F. van der, Habraken, F.H.P.M., J. Appl. Phys., 89, p. 2993 (2001).Google Scholar
11. Schropp, R.E.I., Werf, C.H.M. van der, Veen, M.K. van, Veenendaal, P.A.T.T. van, Löffler, J., Hartman, Z., Zambrano, R. Jimenez, Rath, J.K., this conference, to be published.Google Scholar