Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-pp5r9 Total loading time: 0.209 Render date: 2021-06-20T17:36:21.736Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

High Temperature Deformation Behavior of a Mechanically Alloyed Mo Silicide Alloy

Published online by Cambridge University Press:  26 February 2011

Martin Heilmaier
Affiliation:
martin.heilmaier@mb.uni-magdeburg.de, University Magdeburg, Institute for Materials & Joining Technology, Grosse Steinernetischstrasse 6, Magdeburg, D-39016 Magdeburg, Germany, +493916714596, +493916714569
Holger Saage
Affiliation:
holger.saage@mb.uni-magdeburg.de, University Magdeburg, Institute for Materials & Joining Technology, Grosse Steinernetischstrasse 6, Magdeburg, D-39016 Magdeburg, Germany
Pascal Jéhanno
Affiliation:
pascal.jehanno@plansee.com, Plansee SE, Technology Centre, Reutte/Tyrolia, A-6600, Austria
Mike Böning
Affiliation:
mike.boening@plansee.com, Plansee SE, Technology Centre, Reutte/Tyrolia, A-6600, Austria
Jens Freudenberger
Affiliation:
j.freudenberger@ifw-dresden.de, Leibniz-Institut fuer Festkoerper- und Werkstoffforschung Dresden, Helmholtzstr. 20, Dresden, D-01069, Germany
Get access

Abstract

A 3-phase Mo-Si-B alloy consisting of Mo solid solution and the intermetallic phases Mo3Si and Mo5SiB2 (T2) was manufactured employing mechanical alloying (MA) as the crucial processing step. After consolidation via cold compaction, sintering in hydrogen atmosphere and final hot isostatic pressing (HIP) at 1500°C, one obtains an ultra-fine microstructure with a nearly continuous Mo(ss) matrix and the sizes of all phases being in the 1 micron range. Tensile tests were carried out in vacuum at initial strain rates ranging from 10-4 to 10-2 s-1 and the temperature varied between n1200 an 1400 °C. With a stress exponent of about 2 and the activation energy being close to that of Mo-self diffusion the material exhibits superplasticity at temperatures as low as 1300°C and tensile strain to failures up to 400%, thus, making sound wrought processing on industrial-scale facilities at temperatures typical for refractory metals and alloys feasible. To enhance creep resistance at high temperatures the alloys were annealed at 1700°C for 10h for a coarsening of the microstructure. While, still, the average sizes of all phases were below 10 microns, a considerable reduction in minimum creep rate was noted. This finding also demonstrates the extraordinary high thermal stability of this 3-phase Mo-silicide alloy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Berczik, D.M., US Patent 5,595,616 (1997).Google Scholar
2. Parthasarathy, T.A., Mendiratta, M., Dimiduk, D.M., Acta Mater. 50, 1857 (2002).CrossRefGoogle Scholar
3. Jéhanno, P., Heilmaier, M., Kestler, H., Böning, M., Venskutonis, A., Bewlay, B., Jackson, M., Metall. Mater. Trans. 36A, 515 (2005).CrossRefGoogle Scholar
4. Jéhanno, P., Heilmaier, M., Kestler, H., Intermetallics 12, 1005 (2004).CrossRefGoogle Scholar
5. Nunes, C.A., Sakidja, R., Dong, Z., Perepezko, J.H., Intermetallics 8, 327 (2000).CrossRefGoogle Scholar
6. Berczik, D.M., US Patent 5,693,156, (1997).Google Scholar
7. Krüger, M., Franz, S., Saage, H., Heilmaier, M.: in preparation for Intermetallics.Google Scholar
8. Jéhanno, P., Heilmaier, M., Saage, H., Heyse, H., Böning, M., Kestler, H., Schneibel, J. H., Scripta Mater. 55, 525 (2006).CrossRefGoogle Scholar
9. Sherby, O.D. and Wadsworth, J., Prog. Mater. Sci. 33, 169 (1989).CrossRefGoogle Scholar
10. Frost, H.J., Ashby, M.F., Deformation-Mechanism-Maps, in: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, 1982.Google Scholar
11. Alur, A.P., Chollacoop, N., Kumar, K.S., Acta Mater. 52, 5571 (2004).CrossRefGoogle Scholar
12. Bewlay, B.P., Jackson, M.R., Zhao, J.-C., Subramanian, P.R., Mendiratta, M.G., Lewandowski, J.J., MRS Bulletin 28, 646 (2003).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

High Temperature Deformation Behavior of a Mechanically Alloyed Mo Silicide Alloy
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

High Temperature Deformation Behavior of a Mechanically Alloyed Mo Silicide Alloy
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

High Temperature Deformation Behavior of a Mechanically Alloyed Mo Silicide Alloy
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *