Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-23T07:34:17.060Z Has data issue: false hasContentIssue false

High Resolution Transmission Electron Microscopy of PbTe/Pb1-zEuxSeyTe1-v, Heterostructures.

Published online by Cambridge University Press:  26 February 2011

L. Salamanca-Young
Affiliation:
General Motors Research Laboratories, Warren, MI 48090–9055
D. L. Partin
Affiliation:
General Motors Research Laboratories, Warren, MI 48090–9055
J. Heremans
Affiliation:
General Motors Research Laboratories, Warren, MI 48090–9055
E. M. Dresselhaus
Affiliation:
General Motors Research Laboratories, Warren, MI 48090–9055
Get access

Abstract

High resolution transmission electron microscopy has been used to study the structure of PbTe/Pb1-zEuxSeyTe1-v semiconductor superlattices and heterojunctions grown on BaF2 substrates by molecular beam epitaxy. The objective of this study is to analyze the interface sharpness and the structural perfection of the samples at their interfaces. In the PbTe/Pb1-zEuxSeyTe1-v system, we have observed misfit dislocations and even amorphous regions for high Eu concentrations. We have also observed two directions of growth of the superlattice film. The interface appears to be sharp to approximately three monolayers. A model for the superlattice structure is suggested and used to obtain simulated images using computing methods. The simulated images are compared with those obtained experimentally.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENces

[1[ Preier, H., Appl. Phye. 20, 189 (1979).Google Scholar
[2] Linden, K.J., SPIE Conference on Tunable Diode Lasers, San Diego, CA, Vol. 438, 25 August 1983.Google Scholar
[3] Partin, D.L., and Thrush, C.M., Appl. Phys. Lett. 45, 193 (1984).CrossRefGoogle Scholar
[4] Partin, D.L., Superlattices and Microstructures l, 131 (1985).CrossRefGoogle Scholar
[5] Frank, F.C. and van der Merve, J.H., Proc. Roy. Soc. A198, 206 (1949); A200, 125 (1949); A201, 261 (1950).Google Scholar
[6] Matthews, J.W., Phil. Mag. 6, 1347 (1961);CrossRefGoogle Scholar
Physics of Thin Films, Vol. 4, Haas, G. and Thun, R.E. eds., Academic Press, New York, 1967, p. 137; J. Vac. Sci. Technol. 12, 126 (1975).Google Scholar
[7] Matthews, J.W. and Blakeslee, A.E., J. of Crystal Growth 27, 118 (1974); 29, 273 (1975); 32, 265 (1976).Google Scholar
[8] Hull, R., Gibson, J.M., and Bean, J.C., Appl. Phys. Lett. 46, 179 (1985).Google Scholar
[9] Gibson, J.M., Hull, R., Bean, J.C. and Treacy, M.M.J., Appl. Phys. Lett. 46, 649 (1985).Google Scholar
[10] Bean, J.C., Feldman, L.C., Fiory, A.T., Nakahara, S., and Robinson, I.K., J. Vac. Sci. Technol. A2, 436 (1984).CrossRefGoogle Scholar
[11] Osbourn, G.C., J. Appl. Phys. 53, 1586 (1982).CrossRefGoogle Scholar
[12] Kriechbaum, M., Ambrosch, K.E., Fantner, E.J., Clemens, H. and Bauer, G., Phys. Rev. B30, 3394 (1984).Google Scholar
[13] Samaras, I., Papadimitriou, L., Stoemenos, J. and Economou, N.A., Thin Solid Films Vol. 115, Netherlands, Elsevier Sequoia, 1984, p. 141.Google Scholar
[14] Yoshikawa, M., Ito, M., Shinohara, K. and Ueda, R., J. Crystal Growth 47, 230 (1979).Google Scholar
[15] de Cooman, B.C., Carter, C.B., Wicks, G.W. and Tanque, T., Mat. Res. Soc. Symp. Proc. 37, 239 (1985).Google Scholar
[16] Spence, J.C.H., Experimental High-Resolution Electron Microscopy, Bawn, C.E.H., Fröhlich, H., Hirsch, P.B. and Mott, N.F. eds., Clarendon Press, Oxford, 1981.Google Scholar
[17] Cowley, J.M. and Moodie, A.F., Acta Cry st. 10, 609 (1957).CrossRefGoogle Scholar
[18] Bravman, J.C. and Sinclair, R., Journal of Electron Microscopy Technique 1, 53 (1984).CrossRefGoogle Scholar
[19] Taylor, M.R., Hockly, M., Andrews, D.A. and Davies, G.J., Microscopy of Semiconducting Materials 1985, ed. Cullis, A.G. and Holt, D.B., Institute of Physics Conference Series Number 76, Bristol, England, Adam Hilger Ltd, 1985, p. 295.Google Scholar
[20] The multi-slice programs used in this work were obtained from Arizona State University and were written by O'Keefe, M.A. and Skarnulis, A. and later modified by D. Kuhl, J.C.H. Spence and M.A. O'Keefe.Google Scholar
[21] Wyckoff, R.W.G., Crystal Structure Vol. 1, Interscience Publisher, Easton, PA, 1963.Google Scholar
[22] Holloway, H., Logothetis, E.M. and Wilkes, E., J. Appl. Phys. 41, 3543 (1970).CrossRefGoogle Scholar
[23] Hohnke, D.K., Holloway, H. and Hurley, M.D., Thin Solid Films 38, 49 (1976).Google Scholar
[24] Manasevit, H.M. and Simpson, W.I., J. Electrochem. Soc. 122, 444 (1975).Google Scholar
[25] Lambert, V.L., J. Appl. Phys. 46, 2304 (1975).CrossRefGoogle Scholar
[26] Matthews, J.W., Epitaxial Growth Part B, Matthews, J.W. ed. Academic Press, NY, 1975, p. 559.CrossRefGoogle Scholar
[27] People, R., J. Appl. Phys. 59, 3296 (1986).CrossRefGoogle Scholar