Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-ndjvl Total loading time: 0.369 Render date: 2022-05-17T10:16:45.850Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

High Rate Deposition of Stable Hydrogenated Amorphous Silicon in Transition from Amorphous to Microcrystalline Silicon

Published online by Cambridge University Press:  01 February 2011

Guofu Hou
Affiliation:
Institute of Photoelectronics, Nankai University, Tianjin, 300071, P.R.China
Xinhua Geng
Affiliation:
Institute of Photoelectronics, Nankai University, Tianjin, 300071, P.R.China
Xiaodan Zhang
Affiliation:
Institute of Photoelectronics, Nankai University, Tianjin, 300071, P.R.China
Ying Zhao
Affiliation:
Institute of Photoelectronics, Nankai University, Tianjin, 300071, P.R.China
Junming Xue
Affiliation:
Institute of Photoelectronics, Nankai University, Tianjin, 300071, P.R.China
Huizhi Ren
Affiliation:
Institute of Photoelectronics, Nankai University, Tianjin, 300071, P.R.China
Jian Sun
Affiliation:
Institute of Photoelectronics, Nankai University, Tianjin, 300071, P.R.China
Dekun Zhang
Affiliation:
Institute of Photoelectronics, Nankai University, Tianjin, 300071, P.R.China
Yueqin Xu
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd, Golden CO80401, U.S.A
Get access

Abstract

High rate deposition of high quality and stable hydrogenated amorphous silicon (a-Si:H) films were performed near the threshold of amorphous to microcrystalline phase transition using a very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) method. The effect of hydrogen dilution on optic-electronic and structural properties of these films was investigated by Fourier-transform infrared (FTIR) spectroscopy, Raman scattering and constant photocurrent method (CPM). Experiment showed that although the phase transition was much influenced by hydrogen dilution, it also strongly depended on substrate temperature, working pressure and plasma power. With optimized condition high quality and high stable a-Si:H films, which exhibit σphd of 4.4×106 and deposition rate of 28.8Å/s, have been obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Rech, B., Roschek, T., Muller, J., Wieder, S., Wagner, H., Solar Energy Materials & Solar Cells 66, 267 (2001).CrossRefGoogle Scholar
[2] Guha, S., Xu, X., Yang, J., Banerjee, A., App l. Phys. Lett. 66 (5), 595597 (1995).CrossRefGoogle Scholar
[3] Korevaar, B.A., et al, J. Non-Cryst. Solids, 266-269, 380 (2000)CrossRefGoogle Scholar
[4] Matsumura, H., Japanese J. of Appl. Phys. 37, 3175 (1998)CrossRefGoogle Scholar
[5] Nelson, B.P., Iwaniczko, E., Mahan, A.H., Wang, Qi, et al, Extended Abstract of the 1st International Conference on Cat-CVD process, Kanazawa, Japan, 2000, 291.Google Scholar
[6] Kondo, M., Nishimoto, T., Katai, M., Suzuki, S., Nasuno, Y. and Matsuda, A., Technical Digest of the International PVSEC-12, Jeju, Korea, 2001, 41.Google Scholar
[7] Kroll, U., Meier, J., Torres, P., Pohl, J. and Shah, A., J. Non-Cryst. Solids, 227-230, 68 (1998).CrossRefGoogle Scholar
[8] Takai, M., Nishimoto, T., Takagi, T., Kondo, M., Matsuda, A., J. Non-Cryst. Solids, 266-269,90 (2000).CrossRefGoogle Scholar
[9] Wang, Qi, Yue, Guozhen, Li, Jing, Han, Daxing, Solid state communication 113, 175 (2000).CrossRefGoogle Scholar
[10] Hou, Gguofu, Mai, Yaohua, Geng, Xinhua, Zhang, Xiaodan, et al, Physica.Status.Solidi B, (unpublished)Google Scholar
[11] Ray, Swati, Das, Chandan, Mukhopadhyay, S., Csaha, S., Solar Energy Materials & Solar Cells 66, 393 (2002).CrossRefGoogle Scholar
[12] Yang, J., Banerjee, A. and Guha, S., Appl. Phys. Lett. 70 (22), 29752977(1997).CrossRefGoogle Scholar
[13] Brodsky, M.H., Cardona, M. and Cuomo, J.J., Phys. Rev. B16, 3556 (1977).CrossRefGoogle Scholar
[14] Droz, C., Vallat-Sauvain, E., Bailat, J., Feitknecht, L., Shah, A., European PVSECE-17, Munich, Oct.22~26, 2001, 1.Google Scholar
[15] Klein, S., Finger, F., Cariu, R., Wagner, H., Thin Solid Films 395, 305 (2001).CrossRefGoogle Scholar
[16] Martins, R., Aguas, H., Ferreira, I., Fortunato, E. and Guimaraes, L., Solar Energy 69 (1–6), 257262 (2000).CrossRefGoogle Scholar
[17] Cardona, M., Physica. Status. Solidi, B118, 463 (1983).CrossRefGoogle Scholar
[18] Sheng, Shuran, Liao, Xianbo, Kong, Guangli and Han, Hexiang, Appl. Phys. Lett. 73 (3), 336338 (1998).CrossRefGoogle Scholar
[19] Deng, X.M., Phys. Rev. B43, 4820 (1991).CrossRefGoogle Scholar
[20] Sheng, Shuran, Liao, Xianbo and Kong, Guangli, Appl. Phys. Lett. 78 (17), 25092511 (2001)CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

High Rate Deposition of Stable Hydrogenated Amorphous Silicon in Transition from Amorphous to Microcrystalline Silicon
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

High Rate Deposition of Stable Hydrogenated Amorphous Silicon in Transition from Amorphous to Microcrystalline Silicon
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

High Rate Deposition of Stable Hydrogenated Amorphous Silicon in Transition from Amorphous to Microcrystalline Silicon
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *