Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-lfkwv Total loading time: 1.381 Render date: 2021-05-06T23:11:20.431Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

High Quality AlN and GaN Grown on Si(111) by Gas Source Molecular Beam Epitaxy with Ammonia

Published online by Cambridge University Press:  03 September 2012

Sergey A. Nikishin
Affiliation:
Dept of Electrical Engineering, Texas Tech University, Lubbock, TX 79409, U. S. A
Nikolai N. Faleev
Affiliation:
Dept of Electrical Engineering, Texas Tech University, Lubbock, TX 79409, U. S. A
Vladimir G. Antipov
Affiliation:
Dept of Electrical Engineering, Texas Tech University, Lubbock, TX 79409, U. S. A
Sebastien Francoeur
Affiliation:
Dept of Electrical Engineering, Texas Tech University, Lubbock, TX 79409, U. S. A
Luis Grave de Peralta
Affiliation:
Dept of Electrical Engineering, Texas Tech University, Lubbock, TX 79409, U. S. A
George A. Seryogin
Affiliation:
Dept of Electrical Engineering, Texas Tech University, Lubbock, TX 79409, U. S. A
Mark Holtz
Affiliation:
Dept of Physics, Texas Tech University, Lubbock, TX 79409, U. S. A
Tat'yana I. Prokofyeva
Affiliation:
Dept of Physics, Texas Tech University, Lubbock, TX 79409, U. S. A
S. N. G. Chu
Affiliation:
Lucent/Bell Labs, Murray Hill, NJ 07974, U. S. A
Andrei S. Zubrilov
Affiliation:
Ioffe Physical-Technical Institute, St.Petersburg, 194021, Russia
Vyacheslav A. Elyukhin
Affiliation:
Ioffe Physical-Technical Institute, St.Petersburg, 194021, Russia
Irina P. Nikitina
Affiliation:
Ioffe Physical-Technical Institute, St.Petersburg, 194021, Russia
Andrei Nikolaev
Affiliation:
Ioffe Physical-Technical Institute, St.Petersburg, 194021, Russia
Yuriy Melnik
Affiliation:
TDI, Inc., Gathersburg, MD 20877, U. S. A
Vladimir Dmitriev
Affiliation:
TDI, Inc., Gathersburg, MD 20877, U. S. A
Henryk Temkin
Affiliation:
Dept of Electrical Engineering, Texas Tech University, Lubbock, TX 79409, U. S. A
Get access

Abstract

We describe the growth of high quality AlN and GaN on Si(111) by gas source molecular beam epitaxy (GSMBE) with ammonia (NH3). The initial nucleation (at 1130-1190K) of an AlN monolayer with full substrate coverage resulted in a very rapid transition to two-dimensional (2D) growth mode of AlN. The rapid transition to the 2D growth mode of AlN is essential for the subsequent growth of high quality GaN, and complete elimination of cracking in thick ( > 2 μm) GaN layers. We show, using Raman scattering (RS) and photoluminescence (PL) measurements, that the tensile stress in the GaN is due to thermal expansion mismatch, is below the ultimate strength of breaking of GaN, and produces a sizable shift in the bandgap. We show that the GSMBE AlN and GaN layers grown on Si can be used as a substrate for subsequent deposition of thick AlN and GaN layers by hydride vapor phase epitaxy (HVPE).

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Stevens, K. S., Kinniburgh, M., and Beresford, R., Appl. Phys. Lett. 66, 3518 (1995).CrossRefGoogle Scholar
2. Guha, S., Bojarczuk, N. A., Appl. Phys. Lett. 72, 415 (1998).CrossRefGoogle Scholar
3. Kuksenkov, D., Temkin, H., Gaska, R., and Yang, J. W., IEEE Electron. Device Lett., 19, 222 (1998).CrossRefGoogle Scholar
4. Marchand, H., Zhang, N., Zhao, L., Golan, Y., Rosner, S. J., Girolami, G., Fini, Paul T., Ibbetson, J. P., Keller, S., DenBaars, Steven, Speck, J. S., and Mishra, U. K., MRS Internet J. Nitride Semicond. Res. 4, 2 (1999) and references therein.CrossRefGoogle Scholar
5. Yasutake, K., Takeuchi, a., Kakiuchi, H., and Yoshii, K., J. Vac. Sci. Technol., A 16, 2140 (1998).CrossRefGoogle Scholar
6. Calleja, E., Sánchez-García, M. A., Sánchez, F. J., Calle, F., Naranjo, F. B., Muñoz, E., Molina, S. I., Sánchez, A. M., Pacheco, F. J., García, R., J. Cryst. Growth, 201/202, 296 (1999) and references therein.CrossRefGoogle Scholar
7. Godlewski, M., Bergman, J. P., Monemar, B., Rossner, U., Barski, A., Appl. Phys. Lett. 69, 2089 (1996).CrossRefGoogle Scholar
8. Nikishin, S. A., Antipov, V. G., Francoeur, S., Faleev, N. N., Seryogin, G. A., Elyukhin, V. A., Temkin, H., Prokofyeva, T. I., Holtz, M., Konkar, A. and Zollner, S., Appl. Phys. Lett., 75, 484 (1999).CrossRefGoogle Scholar
9. Hellman, E. S., Buchanan, D. N. E., and Chen, C. H., MRS Internet J. Nitride Semicond. Res. 3, 43 (1998).CrossRefGoogle Scholar
10. Nikishin, S. A., Faleev, N. N., Antipov, V. G., Francoeur, S., Peralta, L. Grave de, Seryogin, G. A., Temkin, H., Prokofyeva, T. I., Holtz, M., and Chu, S. N. G., Appl. Phys. Lett. 75, 2073 (1999).CrossRefGoogle Scholar
11. Lee, N.-E., Powell, R. C., Kim, Y.-W., and Greene, J. E., J. Vac. Sci Thechnol, A 13, 2293 (1995).CrossRefGoogle Scholar
12. Antipov, V. G., Nikishin, S. A., and Sinyavskii, D. V., Tech. Phys. Lett. 17, 45 (1991).Google Scholar
13. Lander, J. J., Surf. Sci., 1, 125 (1964).CrossRefGoogle Scholar
14. Osakabe, N., Tanishiro, Y., Yagi, K., and Honjo, G., Surf. Sci., 109, 353 (1981).CrossRefGoogle Scholar
15. Antipov, V. G., Nikishin, S. A., Zubrilov, A. S., Tsvetkov, D. V., and Ulin, V. P., Proceedings of the Sixth International Conference on silicon Carbide and Related Materials, Kyoto, Japan, 18-21 Sept. 1995, Inst. Phys. Conf. Ser. No 142 (IOP, London, 1996), Vol. XXV+1120, p.847 and references therein.Google Scholar
16. Nakada, Y., Aksenov, I., and Okumura, H., Appl. Phys. Lett., 73, 827 (1998).CrossRefGoogle Scholar
17. Ohtani, A., Stevens, K. S., and Beresford, R., Appl. Phys. Lett., 65, 61 (1994).CrossRefGoogle Scholar
18. Bourret, A., Barski, A., Rouviere, J. L., Renaud, G., and Barbier, A., J. Appl. Phys. Lett. 83, 2003 (1998).Google Scholar
19. Schenk, H. P. D., Kipshidze, G. D., Lebedev, V. B., Shokhovets, S., Goldhahn, R., Ktäuβlich, J., Fissel, A., Richter, Wo., J. Cryst. Growth, 201/202, 359 (1999);CrossRefGoogle Scholar
20. Calleja, E., Sánchez-García, M. A., Monroy, E., Sánchez, F. J., Muñoz, E., Sanz-Hervás, A., Villar, C., and Aguilar, M., J. Appl. Phys. 82, 4681 (1997).CrossRefGoogle Scholar
21. Powell, R. C., Lee, N.-E., and Greene, J. E., Appl. Phys. Lett., 60, 2505 (1992).CrossRefGoogle Scholar
22. Nikishin, S. A., Faleev, N. N., Temkin, H., and Chu, S. N. G., State-of-the-Art Program on Compound Semiconductors (SOTAPOCS XXXI), Honolulu, Hawaii, 1999, October 17-22, Electrochemical Society Proceedings Volume 99-17, p. 238 (1999).Google Scholar
23. Silicon Nitride in Electronics, edited by Rzhanov, A. V.; Novosibirsk, Nauka (1982).Google Scholar
24. Nikishin, S. A., and Temkin, H., unpublished.Google Scholar
25. Bourret, A., Barski, A., Rouvière, J. L., Renaud, G., Barbier, A., J. Appl. Phys. 83, 2003, (1998).CrossRefGoogle Scholar
26. Kipshidze, G. D., Schenk, H. P., Fissel, A., Kaiser, U., Schulze, J., Richter, Wo., Weihnacht, M., Kunze, R., Ktäusslich, J., Semiconductors, 33, 1241 (1999)CrossRefGoogle Scholar
27. Trampert, A., Brandt, O., Yang, H., and Ploog, K. H., Appl. Phys. Lett., 70, 583 (1997).CrossRefGoogle Scholar
28. Moustakas, T. D., Mater. Res. Soc. Symp. Proc. 395, 111 (1996).CrossRefGoogle Scholar
29. Zhang, X., Chua, S.-J., Li, P., Chong, K.-B., Feng, Z.-C., Appl. Phys. Lett. 74, 1984 (1999).CrossRefGoogle Scholar
30. Tang, H. and Webb, J. B., Appl. Phys. Lett., 74, 2373 (1999).CrossRefGoogle Scholar
31. Semiconductors and Semimetals, Vol. 57, Gallium Nitride (GaN) II, edited by Pankove, J. I. and Moustakas, T. D. (Academic Press, San Diego, 1999), p.294.Google Scholar
32. Monemar, B., Bergman, J.P., Buyanova, I.A., Li, W., Amano, H., Akasaki, I.. MRS Internet Journal: Nitride Semiconductor Research 1, 2 (1996).Google Scholar
33. Smith, M., Chen, G.D., Lin, J.K., Jiang, H.X., Khan, M. Asif, Sun, C.J., Chen, Q., Yang, J.W., J.Appl. Phys. 79, 7001 (1996).CrossRefGoogle Scholar
34. Passler, R., Phys. Stat. Sol.(b), 200, 155 (1997).3.0.CO;2-3>CrossRefGoogle Scholar
35. Varshni, Y. P., Physica, 34, 149 (1967).CrossRefGoogle Scholar
36. Zubrilov, A. S., Nikishin, S. A., and Temkin, H. (unpublished).Google Scholar
37. Zubrilov, A. S., Nikolaev, V. I., Tsvetkov, D. V., Dmitriev, V. A., Irvine, K. G., Edmond, J. A., and Carter, C. H. Jr., Appl. Phys. Lett. 67, 533 (1995).CrossRefGoogle Scholar
38. Zubrilov, A. S., Melnik, Yu. V., Nikolaev, A. E., Jakobson, M. A., Nelson, D. K., Dmitriev, V. A., Semiconductors 33, 1067 (1999).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

High Quality AlN and GaN Grown on Si(111) by Gas Source Molecular Beam Epitaxy with Ammonia
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

High Quality AlN and GaN Grown on Si(111) by Gas Source Molecular Beam Epitaxy with Ammonia
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

High Quality AlN and GaN Grown on Si(111) by Gas Source Molecular Beam Epitaxy with Ammonia
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *