Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-16T10:55:16.106Z Has data issue: false hasContentIssue false

High efficiency front-illuminated nanotube-based dye-sensitized solar cells

Published online by Cambridge University Press:  01 July 2011

Kangle Li
Affiliation:
Department of Materials Science and Engineering, National University of Singapore, 5 Engineering Drive 2, Singapore 117576
Stefan Adams
Affiliation:
Department of Materials Science and Engineering, National University of Singapore, 5 Engineering Drive 2, Singapore 117576
Get access

Abstract

A highly reproducible two-step anodization method is reported to fabricate anatase TiO2 nanotube layers. The nanotube membrane fabricated by this method is highly uniform and crack-free. Large area nanotube membranes can be transferred completely onto transparent FTO electrodes without the need for damaging ultrasonic agitation or acid treatment for application in front-illuminated nanotube-based dye-sensitized solar cells. A 16 μm thin front-illuminated nanotube-based dye-sensitized solar cell produced using this method reaches an efficiency of 6.3% under 1 sun illumination AM1.5.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. O’Regan, B., Grätzel, M., Nature 353, 737 (1991).Google Scholar
2. Zhu, K., Neale, N.R., Miedaner, A. and Frank, A.J., Nano Lett. 7, 69 (2007).Google Scholar
3. Jennings, J.R., Ghicov, A., Peter, L.M., Schmuki, P. and Walker, A.B., J. Amer. Chem. Soc. 130, 13364 (2008).Google Scholar
4. Ruan, C.M., Paulose, M., Varghese, O.K., Mor, G.K. and Grimes, C.A., J. Phys. Chem. B 109, 15754 (2005).Google Scholar
5. Kuang, D., Brillet, J., Chen, P., Takata, M., Uchida, S., Miura, H., Sumioka, K., Zakeeruddin, S.M. and Grätzel, M., ACS nano. 2, 1113 (2008).Google Scholar
6. Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K. and Grimes, C.A., Nano Lett. 6, 215(2006).Google Scholar
7. Park, J.H., Lee, T.W. and Kang, M.G., Chem. Commun. 25, 2867 (2008).Google Scholar
8. Varghese, O.K., Paulose, M. and Grimes, C.A., Nat. Nanotechnol. 4, 592 (2009).Google Scholar
9. Lei, B.X., Liao, J.Y., Zhang, R., Wang, J., Su, C.Y. and Kuang, D.B., J. Phys. Chem. C 114, 15228 (2010).Google Scholar
10. Paulose, M., Peng, L., Popat, K.C., Varghese, O.K., LaTempa, T.J., Bao, N.Z., Desai, T.A. and Grimes, C.A., J. Membr. Sci. 319, 199 (2008).Google Scholar
11. Jo, Y., Jung, I., Lee, I., Choi, J. and Tak, Y., Electrochem. Commun. 12, 616 (2010).Google Scholar
12. Li, S.Q., Zhang, G.M, J. Ceram. Soc. Jpn. 118, 291 (2010).Google Scholar
13. Lin, J., Chen, J.F., and Chen, X.F., Electrochem. Commun. 12, 1062 (2010).Google Scholar
14. Shankar, K., Mor, G.K., Prakasam, H.E., Yoriya, S., Paulose, M., Varghese, O.K. and Grimes, C.A., Nanotechnology 18, 065707 (2007).Google Scholar
15. Lin, C.J., Yu, W.Y. and Chien, S.H., J. Mater. Chem. 20, 1073 (2010).Google Scholar
16. Chen, Q.W., Xu, D.S., J. Phys. Chem. C 113, 6310 (2009).Google Scholar
17. Kim, D., Ghicov, A. and Schmuki, P., Electrochem. Commun. 10, 1835 (2008).Google Scholar
18. Li, K.L., Xie, Z.B. and Adams, S., Kristallogr, Z.. 225, 173 (2010).Google Scholar
19. Wang, D.A., Liu, L.F., Chem. Mater. 22, 6656 (2010).Google Scholar
20. Xie, Z.B., Adams, S., Blackwood, D. J. and Wang, J., Nanotechnology 19, 405701–1 (2008).Google Scholar
21. Bach, U., Lupo, D., Comte, P., Moser, J.E., Weissortel, F., Salbeck, J., Spreitzer, H. and Grätzel, M., Nature 395, 583 (1998).Google Scholar
22. Ito, S., Zakeeruddin, S.M., Comte, P., Liska, P., Kuang, D.B. and Grätzel, M., Nat. Photonics 2, 693 (2008).Google Scholar