Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-18T07:00:03.989Z Has data issue: false hasContentIssue false

Hgl−xCdxTe Near Surface Characterization using Computer Aided Rutherford Backscattering Spectrometry

Published online by Cambridge University Press:  25 February 2011

T.-M. Kao
Affiliation:
Stanford Electronics Laboratories, Stanford, CA 94305
T. W. Sigmon
Affiliation:
Stanford Electronics Laboratories, Stanford, CA 94305
Get access

Abstract

In this work, we report the use of Rutherford backscattering(RBS) measurements and computer simulations to provide accurate stoichiometry information and semi-quantitative defect densities for the near surface region of Hg1−xCdxTe (MCT). The accuracy of the Hg1−xCdx Te x-values determined by our method is found to be comparable to other commonly used methods, such as FTIR or the electron microprobe. The data obtained as structural defects from RBS channeling measurements are in basic agreement with other techniques, such as chemical etching. The sensitivity of the channeling measurement to uniformly distributed dislocations is found to be about 107−108 cm−2, however, for dislocations forming subgrains, the detectable level of dislocation comes to 105 – 106 cm−2. The depth profiles of lattice disorder resulting from ion implantation into MCT are also extracted from RBS channeling measurements using these simulation programs. These profiles are found to closely match the calculated profiles for the displaced atoms calculated using an implantation modeling program (TRIM). We also report on the use of channeling-in-grazing-angle-out technique for evaluating the stoichiometry of the first few monolayers of the MCT surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chu, W.K., Mayer, J.W., and Nicolet, M.A., Backscattering Spectrometry, Academic Press, New York (1978)CrossRefGoogle Scholar
2. Feldman, L.C., Mayer, J.W., Picraux, S.T., Materials Analysis by Ion Channeling (Academic Press, New York, 1982).Google Scholar
3. Bahir, G., Bernstein, T., and Kalish, R., Rad. effects, 48, 247(1980).CrossRefGoogle Scholar
4. Wu, S.Y., Choyke, W.J., Takei, W.J., Noreika, A.J., Francombe, M.H., and Irwin, R.B., J. Vac. Sci. Technol. 21(1), 255(1982).CrossRefGoogle Scholar
5. Conway, K.C., Gibbons, J.F., and Sigmon, T.W., J. Vac. Sci. Technol. 21(1), 212(1982).CrossRefGoogle Scholar
6. Nakagawa, K., Maeda, K., and Takeuchi, S., Appl. Phys. Lett. 34, 574(1979)CrossRefGoogle Scholar
7. Inoue, M., Teramoto, I., and Takayanagi, S., J. Appl. Phys. 33, 2578(1962)Google Scholar
8. Lu, Y.C., Route, R.K., Elwell, D., and Feigelson, R.S., J. Vac. Sci. Technol. A3(1), 264(1985)CrossRefGoogle Scholar
9. Barrett, J.H., Phys. Rev. B 3(5), 1527(1971)CrossRefGoogle Scholar
10. Fujimoto, F., Komaki, K., Nakayama, H., and Ishii, M., Phys. Stat. Sol. (A)6, 623 (1971)Google Scholar
11. Foti, G., Grasso, F., Quqttrocchi, R., and Rimini, E., Phys. Rev. B 2169 (1971)Google Scholar
12. Fujimoto, F., Komaki, K. and Nakayama, H., Phys. Stat. Sol. (A)5, 725(1971)Google Scholar
13. Lu, Y.C., Feigelson, R.S., Route, R.K., and Rek, Z.U., J. Vac. Sci. Technol. A4(4), 2190(1986)CrossRefGoogle Scholar
14. Kao, T.-M. and Sigmon, T.W., Appl. Phys. Lett. 49(8), 464(1986)Google Scholar
15. Hull, D., Introduction to Dislocations. 2nd, Oxford, New York (1975)Google Scholar
16. Quere, Y., Phys. Stat. Sol., 30, 713(1968)Google Scholar
17. Piraux, S.T., Rimini, E., Foti, G., and Campisano, S.U., Phys. Rev.B 18(5), 2078 (1973)Google Scholar
18. Bubulac, L.O., J. Cryst. Grow. 72, 478(1985)Google Scholar
19. Yoshikawa, M., Maruyama, K., Saito, T., Maekawa, T., and Takigawa, H., Proceeding of the 1986 U.S. workshop on the physics and chemistry of mercury cadium telluride, Dallas, TX, Oct. 7–9(1986) (to be published)Google Scholar
20. Quere, Y., Rad. effects, 28, 253(1976)Google Scholar
21. Biersack, J.P., and Haggmark, L.G., Nucl. Inst. and Meth., 174, 257(1980)Google Scholar
22. Echstein, W., and Biersack, J.P., Appl. phys., A37, 95(1985)Google Scholar
23. Kao, T.-M., Sigmon, T.W. and Bubulac, L.O., Proceeding of the 1986 U.S. workshop on the physics and chemistry of mercury cadium telluride, Dallas, TX, Oct. 7–9(1986) (to be published)Google Scholar