Hostname: page-component-7dc689bd49-sqk25 Total loading time: 0 Render date: 2023-03-20T13:17:51.269Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Hexagonal Boron Nitride Nanowalls Synthesized by Unbalanced RF Magnetron Sputtering

Published online by Cambridge University Press:  14 March 2011

Boumédiène BenMoussa
Affiliation:
Hasselt University, Institute for Materials Research (IMO), Diepenbeek, Belgium
Jan D’Haen
Affiliation:
Hasselt University, Institute for Materials Research (IMO), Diepenbeek, Belgium IMEC vzw, Division IMOMEC, Diepenbeek, Belgium
Christian Borschel
Affiliation:
Friedrich-Schiller-Universität Jena, Institut für Festkörperphysik, Jena, Germany
Marc Saitner
Affiliation:
Hasselt University, Institute for Materials Research (IMO), Diepenbeek, Belgium
Ali Soltani
Affiliation:
Institut d’Electronique de Microélectronique et de Nanotechnologie, Villeneuve d’Ascq, France
Vincent Mortet
Affiliation:
Hasselt University, Institute for Materials Research (IMO), Diepenbeek, Belgium IMEC vzw, Division IMOMEC, Diepenbeek, Belgium
Carsten Ronning
Affiliation:
Friedrich-Schiller-Universität Jena, Institut für Festkörperphysik, Jena, Germany
Marc D’Olieslaeger
Affiliation:
Hasselt University, Institute for Materials Research (IMO), Diepenbeek, Belgium IMEC vzw, Division IMOMEC, Diepenbeek, Belgium
Hans-Gerd Boyen
Affiliation:
Hasselt University, Institute for Materials Research (IMO), Diepenbeek, Belgium
Ken Haenen
Affiliation:
Hasselt University, Institute for Materials Research (IMO), Diepenbeek, Belgium IMEC vzw, Division IMOMEC, Diepenbeek, Belgium
Get access

Abstract

A recurrent problem in the synthesis of hexagonal boron nitride (h-BN) is contamination with oxygen and carbon, leading to possible detrimental effects on optical and electronic properties. Here it is shown that the addition of H2 to the N2/Ar mixture used during the deposition process, clearly suppresses the incorporation of these elements, reducing their combined level below 5 %. The surface morphology, assessed with scanning electron microscopy (SEM), revealed the presence of h-BN nanowalls, i.e. vertically positioned 2D structures consisting out of several h-BN sheets. While Fourier transform infrared (FTIR) spectroscopy revealed the sp2 nature of the bonds, confirming the hexagonal nature of the nanowalls, the quasi-perfect stoichiometry of the material was evidenced by combining energy dispersive X-ray analysis (EDX) and Rutherford backscattering spectroscopy (RBS). The dimensions and density of these walls are clearly film thickness dependent and cross-sectional TEM images confirmed the increasing level of porosity with film thickness. A dense layer of material is present at the substrate-film interface, which gradually evolves into the 2D nanowall structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Watanabe, K., Taniguchi, T. and Kanda, H., Nat. Mater. 3 (6), 404409 (2004).CrossRefGoogle Scholar
2. Remes, Z., Nesládek, M., Haenen, K., Watanabe, K. and Taniguchi, T., phys. stat. sol. (a) 202 (11), 22292233 (2005).CrossRefGoogle Scholar
3. Watanabe, K., Taniguchi, T., Niiyama, T., Miya, K. and Taniguchi, M., Nat. Photonics 3 (10), 591594 (2009).CrossRefGoogle Scholar
4. Ouyang, T., Chen, Y., Xie, Y., Yang, K., Bao, Zh. and Zhong, J., Nanotechnology 21, 245701 (2010).CrossRefGoogle Scholar
5. Pauli, T. K., Bhattacharya, P. and Bose, D. N., Appl. Phys. Lett. 56, 2648, (1990)CrossRefGoogle Scholar
6. Li, C., Bando, Y., Zhi, C. Y., Huang, Y. and Golberg, D., Nanotechnology 20, 385707 (2009).CrossRefGoogle Scholar
7. Wu, Y. H., Qiao, P. W., Chong, T. C. and Shen, Z.X., Adv. Mater. 14, 64 (2002).3.0.CO;2-G>CrossRefGoogle Scholar
8. Kubota, Y., Watanabe, K., Tsuda, O. and Taniguchi, T., Science 317, 932934 (2007).CrossRefGoogle Scholar
9. Osaka, Y., Chayahara, A., Yokohama, H., Okamoto, M., Hamada, T., Imura, T. and Fujisawa, M., in Synthesis and Properties of Boron Nitride, edited by Pouch, J. J. and Alteroviz, S. A., Materials Science Forum 54-55 (Trans Tech Publications Inc, Aedermannsdorf, Switzerland, 1990), pp. 277294.Google Scholar
10. Dean, C. R., Young, A. F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K. L. and Hone, J., Nature Nanotech. 5, 722726 (2010).CrossRefGoogle Scholar
11. Andujar, J. L., Bertran, E. and Maniette, Y. J., Appl. Phys. 80, 65536555 (1996).CrossRefGoogle Scholar
12. Huang, J. L., Pan, C. H. and Lii, D. F., Surf. Coat. Technol. 122, 166175 (1999).CrossRefGoogle Scholar
13. Choi, B.J., Mater. Res. Bull. 34, 22152220 (1999).CrossRefGoogle Scholar
14. El-Yadouni, A., Soltani, A., Boudrioua, A., Thevenin, P., Bath, A. and Loulergue, J. C., Opt. Mater. 17, 319322 (2001).CrossRefGoogle Scholar
15. Hiramatsu, M., Shiji, K., Amano, H. and Hori, M., Appl. Phys. Lett. 84, 47084710 (2004).CrossRefGoogle Scholar
16. Teii, K., Shimada, S., Nakashima, M. and Chuang, A.T.H., J. Appl. Phys. 106, 084303 (2009).CrossRefGoogle Scholar
17. Yu, J., Qin, L., Hao, Y., Kuang, S., Bai, X., Chong, Y.-M., Zhang, W. and Wang, E., ACS Nano 4 (1), 414422 (2010).CrossRefGoogle Scholar
18. Paine, R. T. and Narula, C. K., Chem. Rev. 90, 7391 (1990).CrossRefGoogle Scholar
19. Geick, R., Perry, C. H. and Rupprecht, G., Phys. Rev. 146, 543547 (1966).CrossRefGoogle Scholar
20. Borowiak-Palen, E., Pichler, T., Fuentes, G. G., Bendjemil, B., Liu, X., Graff, A., Behr, G., Kalenczuk, R.J., Knupfer, M. and Fink, J., Chem. Commun. 1, 8283 (2003).CrossRefGoogle Scholar
21. Chen, Z. G., Zou, J., Liu, G., Li, F., Wang, Y., Wang, L. Z., Yuan, X. L., Sekiguchi, T., Cheng, H. M. and Lu, G. Q., ACS Nano 2, 21832191 (2008).CrossRefGoogle Scholar
22. Rinzler, A. G., Hafner, J. H., Nikolaev, P., Lou, L., Kim, S. G., Tomanek, D., Nordlander, P., Cobert, D. T. and Smalley, R.E., Science 269, 1550 (1995).CrossRefGoogle Scholar
23. Zhi, C. Y., Bando, Y., Tang, C.C., Golberg, D., Xie, R. G. and Sekigushi, T., Appl.Phys. Lett. 86, 213110 (2005).CrossRefGoogle Scholar
24. Kobayashi, K., Tanimura, M., Nakai, H., Yoshimura, A., Yoshimura, H., Kojima, K. and Tachibana, M., J. Appl. Phys. 101, 094306 (2007).CrossRefGoogle Scholar