Hostname: page-component-5d59c44645-7l5rh Total loading time: 0 Render date: 2024-02-28T23:54:06.061Z Has data issue: false hasContentIssue false

Heteroepitaxial Growth of a Wide Gap P-type Oxysulfide, LaCuOS

Published online by Cambridge University Press:  11 February 2011

Hidenori Hiramatsu
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, 226–8503, Japan. Hosono Transparent ElectroActive Materials (TEAM) Project, ERATO, JST, 3–2–1 Sakado, Takatsu, Kawasaki 213–0012, Japan.
Kazushige Ueda
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, 226–8503, Japan.
Hiromichi Ohta
Affiliation:
Hosono Transparent ElectroActive Materials (TEAM) Project, ERATO, JST, 3–2–1 Sakado, Takatsu, Kawasaki 213–0012, Japan.
Masahiro Hirano
Affiliation:
Hosono Transparent ElectroActive Materials (TEAM) Project, ERATO, JST, 3–2–1 Sakado, Takatsu, Kawasaki 213–0012, Japan.
Hideo Hosono
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, 226–8503, Japan. Hosono Transparent ElectroActive Materials (TEAM) Project, ERATO, JST, 3–2–1 Sakado, Takatsu, Kawasaki 213–0012, Japan.
Get access

Abstract

Epitaxial films of LaCuOS, a wide gap p-type semiconductor, were grown on yittria- stabi-lized-zirconia (YSZ) (001) or MgO (001) substrates by a reactive solid phase epitaxy (R-SPE) method. Crystal quality, electrical and optical properties on the epitaxial films on each substrate are examined in this paper. Achievement of the heteroepitaxial growth of LaCuOS on the MgO (001) substrate improves optical properties of LaCuOS such as spectral bandwidths and emission intensity, suggesting that the MgO (001) substrate is more preferable than the YSZ (001) for epitaxial growth substrate for LaCuOS.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Palazzi, M., Acad. Sci., Paris C.R. 292, 789 (1981).Google Scholar
2. Ueda, K., Inoue, S., Hirose, S., Kawazoe, H., and Hosono, H., Appl. Phys. Lett. 77, 2701 (2000).Google Scholar
3. Ueda, K., Inoue, S., Hosono, H., Sarukura, N., and Hirano, M., Appl. Phys. Lett. 78, 2333 (2001).Google Scholar
4. Inoue, S., Ueda, K., Hosono, H., and Hamada, N., Phys. Rev. B 64, 245211 (2001).Google Scholar
5. Hiramatsu, H., Ueda, K., Orita, M., Hirano, M., and Hosono, H., J. Appl. Phys. 91, 9177 (2002).Google Scholar
6. Hiramatsu, H., Ueda, K., Ohta, H., Orita, M., Hirano, M., Hosono, H., Thin Solid Films 411, 125 (2002).Google Scholar
7. Ohta, H., Nomura, K., Orita, M., Hirano, M., Ueda, K., Suzuki, T., Ikuhara, Y., and Hosono, H., Adv. Funct. Mater. (in press).Google Scholar
8. Nomura, K., Ohta, H., Ueda, K., Orita, M., Hirano, M., and Hosono, H., Thin Solid Films 411, 147 (2002).Google Scholar
9. Hiramatsu, H., Ueda, K., Ohta, H., Orita, M., Hirano, M., and Hosono, H., Appl. Phys. Lett. 81, 598 (2002).Google Scholar