Hostname: page-component-cd4964975-8tfrx Total loading time: 0 Render date: 2023-03-28T16:51:40.139Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Height Dependent Resistivity of Copper Interconnects in the Size Effect

Published online by Cambridge University Press:  01 February 2011

Hideki Kitada
Affiliation:, Fujitsu Lab. Ltd., New material development, morinosato-wakamiya10-1, atsugisi, 243-0197, Japan, +81-46-250-8261
Takashi Suzuki
Affiliation:, Fujitsu Laboratories Ltd, 50 Fuchigami, Akiruno, 197-0833, Japan
Takahiro Kimura
Affiliation:, Fujitsu Laboratories Ltd, 50 Fuchigami, Akiruno, 197-0833, Japan
Tomoji Nakamura
Affiliation:, Fujitsu Laboratories Ltd, 10-1 Morinosato-Wakamiya, atsugi, 243-0197, Japan
Get access


We investigated the copper grain size dependence on the interconnect line height using the EBSD (Electron Back Scattering Diffraction) pattern method. In our grain size measurements, we excluded the twin boundaries because of its small contribution to the electron scattering. Our experiments showed that the average grain size of a 70 nm-high line was about 24% smaller than for a 190 nm-high line.

We estimated the grain boundary scattering components by the Fuchs-Sondheimer (FS) and the Mayadas-Shatzkes (MS) models including the line height dependence of the grain size parameter (d). In order to evaluate precisely the influence of height dependence of grain size in the FS and MS models, we also determined the surface scattering coefficient of the Ta/Cu and SiC/Cu interfaces by an independent experiment.

From this, we found that grain boundary scattering components became approximately 32% larger for the 70 nm-wide line when the line height dependence of the grain size was taken into consideration.

Research Article
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



[1] Mayadas, A. F. and Shatzkes, M. Phys. Rev. B1(1970) 1384.Google Scholar
[2] Sondheimer, E. H., Phys. Rev. 80(1950) 401.CrossRefGoogle Scholar
[3] Fuchs, K. Proc. Cambridge Phil. Soc. 34(1938) 100.CrossRefGoogle Scholar
[4] Steinhogl, W. et al.,J.Appl.Phys. 97(2005) 023706.CrossRefGoogle Scholar
[5] Zhang, W. et al. J.Vac.Sci.Technol. B22(2004) 1830.CrossRefGoogle Scholar
[6] Rossnagel, S. M. and Kuan, T. S., J. Vac. Sci. Technol. B22(2004) 240.Google Scholar
[7] Leunissen, L. H., et. al., J.Vac.Sci.Technol. B24(2006) 1859.Google Scholar
[8] Plombon, J. J., et. al., Appl. Phys. Lett. 89(2006) 113124.CrossRefGoogle Scholar
[9] Guillaumond, J. F. et. al., Proc. IITC (2003) 8.2.Google Scholar
[10] Besser, P. R., et. al., J.Electro. Mat. 30(2001) 320.Google Scholar
[11] Zhanga, W. et. al., J.Electrochem.Soc. 152(2005) C832.Google Scholar
[12] Alers, G. B., Cu Resistivity Work shop (2005).Google Scholar
[13] Kuan, T.S., et. al. MRS Symp. Proc. Vol. 612(2000).CrossRefGoogle Scholar
[14] Lingk, C. and Gross, M. E., J.Appl.Phys. 84(1998) 5547.CrossRefGoogle Scholar
[15] Besser, P. R. et. al., J. Electrochem. Mat. 30(2001) 320.Google Scholar
[16] Khoo, K. et. al., Proc. ADMETA Asian sesion (2006) 58.Google Scholar
[17] Sutton, A. P., Balluffi, R. W., Interface in Crystalline Materials (Clarendon, Oxford, 1995).Google Scholar
[18] Yoshinaga, H. Phys. Stat. Sol. 18, 625 (1966).Google Scholar
[19] Lu, L. et. al. Science, 304 (2004) 422–26.CrossRefGoogle Scholar
[20] Hinode, K. et. al., Jpn. J. Appl. Phys. 40 (2001) L1097.Google Scholar