Skip to main content Accessibility help
×
Home
Hostname: page-component-56f9d74cfd-fpcrz Total loading time: 0.289 Render date: 2022-06-25T10:07:08.787Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Guided-mode resonance and field enhancement in semiconductor nanorod arrays

Published online by Cambridge University Press:  21 April 2015

W. X. Yu
Affiliation:
University of Michigan, MI
Y. Yi*
Affiliation:
University of Michigan, MI Massachusetts Institute of Technology, Cambridge, MA
*
Get access

Abstract

Guided mode resonance was numerically demonstrated in the tapered silicon nitride nanorod arrays on glass substrate. Finite difference time domain technique was employed to investigate the detailed light-matter interaction dynamics and the generation of resonance at femtoseconds. Enhanced electromagnetic (EM) field intensity with enhancement factor of 200∼250 could be achieved. This highly concentrated electromagnetic field could be extended to the nanorod array tips and substrate for higher order resonance modes, which allows future application of this transverse propagating field in optical signal amplification, like fluorescence or Raman enhancement.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lin, Y.R., Wang, H.P., Lin, C.A., and He, J.-H., J. Appl. Phys. 106 (2009).
Lin, Y.-R., Lai, K. Y., Wang, H.P., and He, J.-H., Nanoscale 2, 2765 (2010).10.1039/c0nr00402bCrossRef
Wang, Y., Lu, N., Xu, H., Shi, G., Xu, M., Lin, X., Li, H., Wang, W., Qi, D., Lu, Y., and Chi, L., Nano Research 3, 520 (2010).10.1007/s12274-010-0012-xCrossRef
Hessel, A., and Oliner, A. A., Appl. Opt. 4, 1275 (1965).10.1364/AO.4.001275CrossRef
Wang, S. S., Magnusson, R., Bagby, J. S., and Moharam, M. G., J. Opt. Soc. Am. A Opt. Image Sci. Vis. 7, 1470 (1990).10.1364/JOSAA.7.001470CrossRef
Wang, S. S., and Magnusson, R., Opt. Lett. 19, 919 (1994).10.1364/OL.19.000919CrossRef
Liu, Z. S., Tibuleac, S., Shin, D., Young, P. P., and Magnusson, R., Opt. Lett. 23, 1556 (1998).10.1364/OL.23.001556CrossRef
Magnusson, R., Shin, D., and Liu, Z. S., Opt. Lett. 23, 612 (1998).10.1364/OL.23.000612CrossRef
Szeghalmi, A., Kley, E. B., and Knez, M., J. Phys. Chem. C 114, 21150 (2010).10.1021/jp107540yCrossRef
Lin, S. F., Wang, C. M., Tsai, Y. L., Ding, T. J., Yang, T. H., Chen, W. Y., Yeh, S. F., and Chang, J. Y., Sens. Actuators, B 176, 1197 (2013).10.1016/j.snb.2012.02.014CrossRef
Shi, L., Pottier, P., Peter, Y.A., and Skorobogatiy, M., Opt. Express 16, 17962 (2008).10.1364/OE.16.017962CrossRef
Zhu, A. Y., Zhu, S., and Lo, G.Q., Opt. Express 22, 2247 (2014).10.1364/OE.22.002247CrossRef
Lee, Y.C., Huang, C.F., Chang, J.Y., and Wu, M.-L., Opt. Express 16, 7969 (2008).10.1364/OE.16.007969CrossRef
Lin, J. H., Tseng, C.Y., Lee, C.T., Kan, H.-C., and Hsu, C. C., Opt. Express 21, 24318 (2013).10.1364/OE.21.024318CrossRef
Gao, W., Shu, J., Qiu, C., and Xu, Q., ACS Nano 6, 7806 (2012).10.1021/nn301888eCrossRef
Giese, J. A., Yoon, J. W., Wenner, B. R., Allen, J. W., Allen, M. S., and Magnusson, R., Opt. Lett. 39, 486 (2014).10.1364/OL.39.000486CrossRef
Kabashin, A. V., Evans, P., Pastkovsky, S., Hendren, W., Wurtz, G. A., Atkinson, R., Pollard, R., Podolskiy, V. A., and Zayats, A. V., Nat. Mater. 8, 867 (2009).10.1038/nmat2546CrossRef
Khatua, S., Paulo, P. M. R., Yuan, H., Gupta, A., Zijlstra, P., and Orrit, M., ACS Nano (2014).
Jackson, J. B., and Halas, N. J., Proc. Natl. Acad. Sci. U. S. A. 101, 17930 (2004).10.1073/pnas.0408319102CrossRef

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Guided-mode resonance and field enhancement in semiconductor nanorod arrays
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Guided-mode resonance and field enhancement in semiconductor nanorod arrays
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Guided-mode resonance and field enhancement in semiconductor nanorod arrays
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *