Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-12T21:23:06.870Z Has data issue: false hasContentIssue false

Growth of Vacancy Clusters During Post-Irradiation Annealing of Ion Implanted Silicon,

Published online by Cambridge University Press:  21 February 2011

A. van Veen
Affiliation:
IRI Delft University of Technology, Mekelweg 15, 2629JB, Delft, The Netherlands
H. Schut
Affiliation:
IRI Delft University of Technology, Mekelweg 15, 2629JB, Delft, The Netherlands
A. Rivera
Affiliation:
IRI Delft University of Technology, Mekelweg 15, 2629JB, Delft, The Netherlands
A.V. Fedorov
Affiliation:
IRI Delft University of Technology, Mekelweg 15, 2629JB, Delft, The Netherlands
Get access

Abstract

Annealing experiments of deuterium implanted silicon have been performed while positron beam analysis was used for monitoring the cavity growth. The experiments indicate up to annealing temperature 500° C similar defect evolution for both the low dose of 1016 cm-2 as for a 3 times higher dose. At this temperature the deuterium stabilized vacancy clusters dissociate and only in the case of the high dose micro-cavities are formed. Monte Carlo simulations of vacancy cluster growth in silicon based on vacancy cluster dissociation energies, calculated with the Stillinger Weber potential, have been performed. The results indicate that for low initial defect concentrations vacancy clusters might be hindered to grow because the vacancy binding energy of the clusters does not increase monotonically with the cluster size. Only a high concentration guarantees that growth barriers will be overcome.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Meyers, S.M., Bishop, D.M., Follstaedt, D.M., Stein, H.J. and Wampler, W.R., Mat. Res. Soc. Symp. 283, 549(1993).Google Scholar
2 Griffioen, C.C., Evans, J.H., P.C. e Jong and A. van Veen, Nucl. lnstr. and Meth. B27, 417 (1987)Google Scholar
3 Keionen et al Phys. Rev. B 37,8269 (1988)Google Scholar
4 Williams, J.S., Wong-Leung, J., Goldberg, R.D., Petravic, M., Mat. Res. Soc. Proc, 373,543 (1995)Google Scholar
5 Brusa, R.S., Zecca, A., Meng, X.T., Ottaviam, G., Tonini, R., Materials Science Forum 175–178,141 (1995)Google Scholar
6 van Veen, A., Schut, H., de Vries, J., Hakvoort, R.A. and , M.R, IJpma in: Positron Beams for Solids and Surfaces, AIP Conf. Proc. 218, eds. Schultz, P.J., Massoumi, G.R., and Simpson, P.J., New York, 1990.Google Scholar
7 Clement, M., de Nijs, J.M.M., van Veen, A., Schut, H. and Balk, P., to be published in IEEE Trans. Nucl. Sci. (1995)Google Scholar
8 Ziegler, J.F., Biersack, J.P. and Littmark, U., The Stopping and Range of Ions in Solids (TRIM), Pergamon, New York, 1985.Google Scholar
9 Hakvoort, R.A., van Veen, A., Mijnarends, P.E., Schut, H., Applied Surface Science 85,271 (1995).Google Scholar
10 Asoka-Kumar, P., Stein, H.J. and Lynn, K.G., Appl. Phys. Lett. 64, 1684 (1994).Google Scholar
11 Fedorov, A. V. and van Veen, A., to be publishedGoogle Scholar
12 Veen, A. v., Schut, H., Hakvoort, R.A., Fedorov, A. and Westerduin, K.T., Mat. Res. Soc Proc, 373, 499 (1995).Google Scholar
13 Stillinger, F.H. and Weber, T.A., Phys. Rev. B3, 3984(1971).Google Scholar