Skip to main content Accessibility help
×
Home
Hostname: page-component-8bbf57454-2p2tb Total loading time: 0.148 Render date: 2022-01-23T03:36:45.313Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

The Grain Size Distribution in Crystallization Processes With Anisotropic Growth Rate

Published online by Cambridge University Press:  01 February 2011

Kimberly S. Lokovic
Affiliation:
klokovic@gmail.com, California State University Long Beach, Physics & Astronomy, 90840, California, United States
Ralf B. Bergmann
Affiliation:
bergmann@bias.de, Bremen Institute for Applied Beam Technology, Bremen, Germany
Andreas Bill
Affiliation:
abill@csulb.edu, California State University Long Beach, Physics & Astronomy, 1250 Bellflower Blvd., Long Beach, California, 90840, United States, 5629858616, 5629857924
Get access

Abstract

The grain size distribution allows characterizing quantitatively the microstructure at different stages of crystallization of an amorphous solid. We propose a generalization of the theory we established for spherical grains, to the case of grains with ellipsoidal shape. We discuss different anisotropic growth mechanisms of the grains in thin films. An analytical expression of the grain size distribution is obtained for the case where grains grow through a change of volume while keeping their shape invariant. The resulting normalized grain size distribution is shown to be affected by anisotropy through the time-decay of the effective growth rate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bergmann, R.B. and Bill, A., J. Cryst. Growth 310, 3135 (2008).CrossRefGoogle Scholar
2 Teran, A.V., Bergmann, R.B. and Bill, A., Mater. Res. Soc. Symp. Proc. 1153, A0503 (2009).Google Scholar
3 Teran, A.V., Bergmann, R.B. and Bill, A., Phys. Rev. B 81, 075319 (2010).CrossRefGoogle Scholar
4 Kolmogorov, A.N., Akad. Nauk SSSR, Izv. Ser. Matem. 1, 355 (1937).Google Scholar
5 Avrami, M., J. Chem. Phys. 7, 1103 (1939); ibid., 8, 212 (1940).CrossRefGoogle Scholar
6 Johnson, W. and Mehl, R., Trans AIME 135, 416 (1939); W. Anderson and R. Mehl, ibid., 161, 140 (1945).Google Scholar
7 Kumomi, H. and Yonehara, T., Jpn. J. Appl. Phys. 36, 1383 (1997)CrossRefGoogle Scholar
8 Kumomi, H., in Growth, Characterization and Electronic Applications of Si-based Thin Films, edited by Bergmann, R. B. (Research Signpost, Trivandrum, India, 2002).Google Scholar
9 Oriented Crystallization on Amorphous Substrates Givargizov, E.I. (Springer Verlag, 1991).CrossRefGoogle Scholar
10 Gentry, K.P., Gredig, T. and Schuller, I.K., Phys. Rev. B 80, 174118 (2009).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Grain Size Distribution in Crystallization Processes With Anisotropic Growth Rate
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The Grain Size Distribution in Crystallization Processes With Anisotropic Growth Rate
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The Grain Size Distribution in Crystallization Processes With Anisotropic Growth Rate
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *