Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-23T10:55:23.492Z Has data issue: false hasContentIssue false

Grafting of alumina by diphenylphosphinate coupling agents

Published online by Cambridge University Press:  01 February 2011

Gilles Guerrero
Affiliation:
UMR CNRS 5637, cc 007, Université Montpellier 2, Place E. Bataillon, F34095 Montpellier Cedex 5 (FRANCE).
Gérald Chaplais
Affiliation:
UMR CNRS 5637, cc 007, Université Montpellier 2, Place E. Bataillon, F34095 Montpellier Cedex 5 (FRANCE).
P. Hubert Mutin
Affiliation:
UMR CNRS 5637, cc 007, Université Montpellier 2, Place E. Bataillon, F34095 Montpellier Cedex 5 (FRANCE).
Jean Le Bideau
Affiliation:
UMR CNRS 5637, cc 007, Université Montpellier 2, Place E. Bataillon, F34095 Montpellier Cedex 5 (FRANCE).
Dominique Leclercq
Affiliation:
UMR CNRS 5637, cc 007, Université Montpellier 2, Place E. Bataillon, F34095 Montpellier Cedex 5 (FRANCE).
André Vioux
Affiliation:
UMR CNRS 5637, cc 007, Université Montpellier 2, Place E. Bataillon, F34095 Montpellier Cedex 5 (FRANCE).
Get access

Abstract

Alumina particles were treated under various conditions with different diphenylphosphinate compounds: diphenylphosphinic acid, ethyl diphenylphosphinate, and trimethylsilyl diphenylphosphinate. The balance between surface complexation (namely grafting) and surface phase transformation (formation of bulk aluminum phosphinate phase) was investigated by IR and solid-state 31P MAS NMR spectroscopy, using the model crystalline phase Al(O2PPh2)3 synthesized in a parallel work as a reference. Satisfactory grafting was obtained either by using diphenylphosphinic acid in aqueous medium at pH about 6, or by using ethyl diphenylphosphinate in organic medium as coupling agents.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gao, W., Dickinson, L., Grozinger, C., Morin, F. G., and Reven, L., Langmuir, 12, 6429 (1996).Google Scholar
2. Caro, J., Noack, M., and Kolsch, P., Microporous Mesoporous Mater., 22, 321 (1998).Google Scholar
3. Laiti, E., Persson, P., and Ohman, L. O., Langmuir, 14, 825 (1998).Google Scholar
4. Maeda, K., Akimoto, J., Kiyozumi, Y., and Mizukami, F., J. Chem. Soc., Chem. Commun. 1033 (1995).Google Scholar
5. Maeda, K., Akimoto, J., Kiyozumi, Y., and Mizukami, F., Angew. Chem. Int. Ed. Engl., 34, 1199 (1995).Google Scholar
6. Maeda, K., Kiyozumi, Y., and Mizukami, F., Angew. Chem. Int. Ed. Engl., 33, 2335 (1994).Google Scholar
7. Hix, G. B., Carter, V. J., Wragg, D. S., Morris, R. E., and Wright, P. A., J. Mater. Chem., 9, 179 (1999).Google Scholar
8. Pitts, J. J., Robinson, M. A., and Trotz, S. I., J. Inorg. Nucl. Chem;, 30, 1299 (1968).Google Scholar
9. Flagg, E. E. and Schmidt, D. L., J. Amer. Chem. Soc., 90, 4173 (1968).Google Scholar
10. Block, B. P., Inorg. Macromol. Rev., 1, 115 (1970).Google Scholar
11. Guerrero, G., Mehring, M., Mutin, P. H., Dahan, F., and Vioux, A., J. Chem. Soc., Dalton Trans. 1537 (1999).Google Scholar
12. Nakayama, H., Eguchi, T., Nakamura, N., Yamaguchi, S., Danjyo, M., Tsuhako, M., and Nakayama, H., J. Mater. Chem., 7, 1063 (1997).Google Scholar