Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-12-06T11:12:21.175Z Has data issue: false hasContentIssue false

Generation of Strong Short Terahertz Pulses via Stimulated Raman Adiabatic Passage-assisted Coherent Scattering

Published online by Cambridge University Press:  01 February 2011

Nikolai Kalugin
Affiliation:
nkalugin@jewel.tamu.edu, Texas A&M University, Physics, Department of Physics, Texas A&M University, College Station, Texas, 77843-4242, United States
Yuri Rostovtsev
Affiliation:
rost@jewel.tamu.edu, Texas A&M University, Physics, Department of Physics, Texas A&M University, College Station, Texas, 77843-4242, United States
Marlan O. Scully
Affiliation:
scully@tamu.edu, Texas A&M University, Physics, Electrical Engineering, and Chemistry, Texas A&M University, College Station, Texas, 77843-4242, United States
Get access

Abstract

We analyzed the efficiency of coherent scattering of infrared radiation in atomic and molecular gases for production of intense short THz pulses, using simulated Raman adiabatic passage (STIRAP). The method is based on excitation of maximal coherence when the system is undergoing through STIRAP in IR-irradiated atomic or molecular gases (for example Rb, methanol, and others) at room temperature. By applying optical pulses in correct sequence one can generate coherence in a system during STIRAP which triggers following coherent scattering of infra-red radiation, and can produce pulses of THz radiation with pulse energies ranging from several nJ to µ-J and pulse durations from several fs to ns.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Grischkowsky, D., Keiding, Soeren, Exter, M. van, and Fattinger, Ch., J Opt. Soc. B 7, 2006 (1990).Google Scholar
2 Zhang, X.-C, Physics in Medicine and Biology 47, 1 (2002).Google Scholar
3 Encyclopedia of Chemical Physics and Physical Chemistry, edited by Moore, J.H and Spencer, N.D, (Institute of Physics, London, 2001).Google Scholar
4 Kalugin, N.G, in Handbook of semiconductor nanostructures and nanodevices, edited by Balandin, A.A and Wang, K.L (American Scientific Publishers, Los Angeles, 2005).Google Scholar
5 Sensing with Terahertz Radiation, edited by Mittleman, D. (Springer, New York, 2003).Google Scholar
6 Ferguson, B. and Zhang, X.-C, Nature Mater. 1, 26 (2002), and references therein.Google Scholar
7 Harris, S. E, Phys. Today 50, No. 7, 36 (1997).Google Scholar
8 Matsko, A. B, Rostovtsev, Y. V, Fleischhauer, M., and Scully, M. O, Phys. Rev. Lett. 86, 2006 (2001).Google Scholar
9 Sokolov, A. V, Walker, D. R, Yavuz, D. D, Yin, G. Y, and Harris, S. E, Phys. Rev. Lett. 85, 562 (2000).Google Scholar
10 Harris, S. E and Sokolov, A. V, Phys. Rev. Lett. 81, 2894 (1998).Google Scholar
11 Nazarkin, A. and Korn, G., Phys. Rev. Lett. 83, 4748 (1999).Google Scholar
12 Scully, M. O, Kattawar, G. W, Lucht, P. R, Opatrny, T., Pilloff, H., Rebane, A., Sokolov, A. V., and Zubairy, M. S, Proc. Natl. Acad. Sci. U.S.A. 9, 10994 (2002).Google Scholar
13 Chang, T.Y, Bridges, T.J, and Burkhardt, E.G, Appl. Phys. Lett. 17, 249 (1970).Google Scholar
14 Chang, T.Y, Bridges, T.J, and Burkhardt, E.G, Appl. Phys. Lett. 17, 357 (1970).Google Scholar
15 Mueller, E.,Wiley Encyclopedia of Electrical and Electronics Engineering, Vol.20, edited by Webster, J.G (John Wiley Sons, New York, 1999), p.597.Google Scholar
16 Born, Max and Wolf, Emil, Principles of optics, (Cambridge, UK; Cambridge University Press, 1997).Google Scholar
17 Bergmann, K., Theuer, H., and Shore, B. W, Rev. Mod. Phys. 70, 1003 (1998).Google Scholar
18 Koehler, R., Tredicucci, A., Beltram, F., Beere, H. E, Linfield, E. H, Davies, A. G, Ritchie, D. A., Iotti, R. C, and Rossi, F., Nature 417, 156 (2002).Google Scholar
19 Gornik, E. and Andronov, A.A, Opt.Quantum Electron. 23 (1991), and references therein.Google Scholar
20 Gavrilenko, V.I, Kalugin, N.G, Krasil, Z.Fnik, Nikonorov, V.V, Galyagin, A.V, and Tsereteli, P.N, Semic. Sci.Technol. 7 B649 (1992).Google Scholar
21 Muravjov, A. V, Strijbos, R. C, Fredricksen, C. J, Weidner, H., Trimble, W., Withers, S. H., Pavlov, S. G, Shastin, V. N, and Peale, R. E, Appl. Phys. Lett. 73, 3037 (1998).Google Scholar
22 Pavlov, S. G, Zhukavin, R. Kh., Orlova, E. E, Shastin, V. N, Kirsanov, A. V, Huebers, H.-W, Auen, K., and Riemann, H., Phys. Rev. Lett. 84, 5220 (2000).Google Scholar
23 Zang, X.-C and Auston, D.H, J.Appl.Phys. 71,326 (1992).Google Scholar
24 Zhao, G., Schouten, R.N, Valk, N. Van der, Wenkebach, W.Th., Planken, P.C.M., Rev.Sci.Inst. 73, 1715 (2002).Google Scholar
25 Rice, A., Jin, Y., Zang, Z.-C-, Bliss, D., Larkin, J., and Alexander, M., Appl.Phys.Lett. 64, 1324 (1994).Google Scholar
26 Pestov, D.S, Belyanin, A.A, Kocharovsky, V.V, Kocharovsky, VI.V., and Scully, M.O, J. Mod. Opt. 51, 2523 (2004).Google Scholar
27 Chin, W., Dognon, J.-P, Canuel, C., Piuzzi, F., Dimicol, I., Mons, M., Compagnon, I., Helden, G. Von, and Meijer, G., J. Phys. Chem. 122, 054317 (2005).Google Scholar
28 Peralta, X.G, Allen, S.J, Wanke, M.C, Harff, N.E, Simmons, J.A, Lilly, M.P, Reno, J.L., Burke, P.J, Eisenstein, J.P, App. Phys. Lett. 81, 1627 (2002).Google Scholar
29 Neil, G.R, Carr, G.L, Gubeli, J.F, Jordan, K., Martin, M.C, McKinney, W.R, Shinn, M., Tani, M., Williams, G.P, and Zhang, X.-C-, Nuclear Instruments and Methods in Physics Research A 507, 537 (2003).Google Scholar
30 Shen, Y.C, Upadhya, P.C, Linfield, E.H, Beere, H.E, Davies, A.G, Appl. Phys. Lett. 83, 3117 (2003).Google Scholar